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EXECUTIVE SUMMARY 

Connected and automated vehicle (CAV) technologies are combination technologies of 

connected vehicle and automated vehicle. As widely known, CAVs can bring with them many 

benefits including improving safety, reducing emissions, and increasing mobility of the 

transportation system. As one of the hot studies that researchers pay attention to, LC (LC) safety 

control plays a significant role in Autonomous Vehicles' development. Thus, the LC behavior of 

the vehicle in connected environment becomes the focus of the current scholar’s research. 

Thanks to the advanced communication technologies, the LC behavior in AV shows a 

different characteristic from that in the traditional condition. The critical problems are dynamic 

trajectory planning, complex cooperation, and strict calculation requirements. As for LC 

maneuver, the state space and action space of leading vehicles, rear vehicles, and the current 

vehicles should be defined more carefully for platooning. The interaction with surrounding 

vehicles makes the LC behavior have a feature of cooperation. Motivated by this purpose, the 

decision-making and trajectory planning of the current vehicle and surrounding vehicles should 

be planned synchronously. 

This study conducts several simulation-based experiments to develop an online LC 

decision-making model and trajectory planning model for AVs involving more than two 

vehicles. The LC decision model and optimal control algorithm are developed based on the risk 

awareness of human drivers, solved by the Priority Reply Deep Q Network (PRDQN). The 

trajectory planning model based on Inverse Reinforcement Learning (IRL) is constructed 

dynamically considering the time spatial variance during trajectory prediction and the time 

efficiency during safety control. To obtain valid results, various driving behavior parameters are 

calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is 

conducted using Support Vector Machine (SVM) for LC trajectory parameters such as lateral 

movement, lateral acceleration, and steering angle. After the calibration process, the simulation 

is conducted on the straight freeway segment under mixed traffic environment including regular 

human-driven vehicles and AVs. Simulation results are discussed in detail. Overall, the result of 

this study gains a better understanding of AVs' LC in terms of time efficiency and safety control. 

It will play a significant role on transferring the CAVs technologies from the laboratory to the 

real-world market. 
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Chapter 1.  Introduction 

1.1 Problem Statement 

Relieving traffic congestion, enhancing mobility, and reducing fuel emissions were 

perceived as the main benefits of connected and autonomous vehicles (CAVs) when they were 

first introduced. In the last decades, increasingly significant multidisciplinary efforts have been 

jointly made by the automotive industry, high-tech companies, public sectors, and research 

institutions around the world in this domain. However, most research efforts have been mainly 

focused on longitudinal control, such as car following models of Adaptive Cruise Control 

(ACC), and Cooperative ACC (CACC). In comparison, fewer contributions have been made 

towards lateral control maneuvers although lane changing behavior is extremely important and 

its relevant study becomes more and more critical particularly as a higher level of vehicle 

automation is enabled in the transportation system. 

Lateral maneuver research is a challenging undertaking that optimizes vehicle and 

transportation system controls by considering individual vehicle kinetics and traffic flow system 

harmonization comprehensively. In general, the CAV LC (LC) system consists of four key 

modules: vehicle-to-vehicle (V2V) communication, localization, LC decision and planning, and 

vehicle control algorithm. Researchers have fully explored the advantages of several different 

vision capture and positioning technologies, such as light detection and ranging (LiDAR), radar, 

global navigation satellite system (GNSS), differential global position system (DGPS), and high-

definition (HD) map construction. These technologies lay a solid foundation for LC model 

construction and optimal control algorithm development. In consideration of the cost and safety 

concerns associated with field tests, the LC model is mainly developed by using a typical 

simulation platform, such as SUMO or VISSIM at a microscopic level. Limited by traffic flow 

organization patterns of these simulation software platforms, the LC decision model and its 

optimal control in the real world may not be simulated and replicated as precisely as possible.  

More precisely, studies on LC decision and planning should focus on when and where to 

perform LC maneuvers, which should be based on real-time information and decision models to 

help with their real-world implementation. In this regard, two main research gaps still exist: 1) 

Decision models may be made “jointly” in a collaborative manner rather than merely 

“simultaneously”; and 2) Lane changing decisions should be made in consideration of their 

impact on the traffic stream. In particular, the presence of the mixed traffic flow that consists of 

CAVs, autonomous vehicles (AVs), connected vehicles (CVs), and human vehicles (HVs), 

would make it more difficult to optimally decide the relevant LC behaviors, especially under 

many complex driving scenarios.  

In addition, after making LC decisions, CAVs need to plan one or more reference 

trajectories that are appealing for a set of objectives and update the proposed trajectories in real 

time to avoid potential collisions until the LC process is completed. Due to the time delay in 

sensing, communication, computation, and execution, CAVs need to predict the possible 

behaviors of surrounding vehicles online to account for effective information transformation. 

The time-consuming control algorithms should be replaced by adaptive concurrent computation 

processes and logic. 
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This study will fill this gap by conducting several simulation-based experiments to 

develop a cooperative lane change decision-making model for CAVs involving more than two 

vehicles and different CAV penetration rates. The LC decision model and optimal control 

algorithm would be developed and simulated on different road segments, including the mainline, 

merging, and departure areas of freeways. This study will also aim to gain a better understanding 

of relevant computational efficiency in terms of time by an online computation process in order 

to help transfer the CAVs technologies from the laboratory to the real-world market. 

1.2 Objectives 

The main goal of this research is to construct an online cooperative LC decision and 

planning model. The objectives of this project are to 1) conduct a comprehensive literature 

review on cooperative LC decisions and planning of CAVs; 2) focus on the trajectory 

optimization model from the perspective of multi-objectives including safety, stability, and 

comfort of passengers, and improve the online algorithm’s computational efficiency; 3) analyze 

the disturbance effect of LC maneuver on traffic flow characteristics; and 4) rebuild the LC 

decision models in a cooperative manner with more than two CAVs in two lanes. 

1.3 Expected Contributions 

To accomplish these objectives, several tasks have been undertaken. A comprehensive 

LC model based on the reinforcement learning-based optimization methodology has been 

developed to solve the decision-making and trajectory planning for CAVs. In particular, it should 

be mentioned that the developed reinforcement learning methodology is currently regarded as the 

most efficient learning-based model because of its low computation complexity and high 

efficiency. So, this control theory could be used to make optimal decisions for automated LC 

maneuvers, and the personal stylized trajectory planning from the perspective of behavior 

cloning.  

An extensive review of the existing literature reveals that real-time control in dense 

traffic scenarios is so significant for the LC models. Several machine learning models have been 

proposed, however little success has been achieved to strike an ideal balance between global 

optimal solutions and computation complexity. The reinforcement learning method, especially 

the inverse reinforcement learning method, intends to find local optimal solutions when the 

rewards function converges. The decision-making models based on PRDQN and the trajectory 

planning models based on MEDIRL proposed in this research will bridge the research gap in that 

aspect.  

1.4 Report Overview 

The research will be structured as shown in Figure 1.1. In this chapter, the background 

and motivation of the study have been discussed, followed by the research objectives, and 

expected contributions. 

Chapter 2 presents a comprehensive literature review on the state-of-the-art and state-of-

the-practice of CAV technologies and various methodological approaches to study LC with or 

without CAVs. This chapter gives a clear picture of existing LC models with consideration of 

CAVs, possible modeling scenarios, traffic flow impact analysis at different penetration rates and 

simulation tools (PTV VISSIM, SUMO, CARLA) to evaluate the model’s performance.  
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Chapter 3 describes the National Generation SIMulation (NGSIM) database that will be 

used as the data source. The data was collected through a network of synchronized digital video 

cameras. NGVIDEO, a customized software application developed for the NGSIM program, 

transcribed the vehicle trajectory data from the video. This vehicle trajectory data provided the 

precise location of each vehicle within the study area every one-tenth of a second, resulting in 

detailed lane positions and locations relative to other vehicles.  

Chapter 4 presents critical problems of LC decision-making and trajectory planning 

based on the Markov Decision Process. Definitions of discrete state and action space of LC agent 

vehicles as well as the reward function are given here. To coordinate with the simulation via 

MPC, some redefinitions based on kinematic models are used to transmit vehicle trajectories 

from the previous machine learning output. Specifically, some considerations for smoothing 

discrete decisions in a time series are also illustrated in this chapter.  

Chapter 5 discusses how to find the optimal policy to describe the ground truth under the 

assumption of behavior cloning. The mechanism of two typical reinforcement learning models, 

PRDQN and Maximum Entropy Deep Inverse RL (MEDIRL), are illustrated. In this regard, the 

general optimization framework is formulated. The objective function is defined to minimize the 

risk level or collision of LC agent vehicles and best mimic the human driving data from Chapter 

3. 

Chapter 6 describes the fundamental settings of the automated LCs control process in 

CARLA and the dense traffic simulation scenarios.  

Chapter 7 presents results of the four simulation scenarios in detail. The collision 

number, statistical analysis of gap distance, acceleration, and jerk angle of each scenario are 

analyzed with different combinations of Human-driven vehicles (HVs) and AVs, so that the 

effects of success LC rate of AVs could be quantified.  

Chapter 8 concludes the report with a summary of the simulation results. Directions for 

future work will also be provided. 
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Figure 1.1 Research structure 
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Chapter 2.  Literature Review 

2.1 Introduction 

The intelligence of automobile products has become the main trend of development, and 

related technologies are actively researched and developed by automobile manufacturers and 

scientific research institutes, which can drive a significant change. The major research efforts on 

Connected and Autonomous Vehicles (CAV) technologies include cooperative collision 

avoidance, platooning, cooperative cruise control, and lane changing assistance (LC). LC 

technology is arguably the most complex and critical to enabling higher levels of vehicle 

automation. It pertains to opportunistic or mandated transfer of a host CAV from the current lane 

to an adjacent lane. In general, the CAVs’ LC system consists of four key modules: vehicle-to-

vehicle (V2V) communication, localization, decision and planning, and vehicle control 

algorithms. With the help of V2V communication, the position, speed, and acceleration of the 

surrounding vehicles can be acquired faster and more accurately. 

Because of the negative impact on traffic safety and linkage to macroscopic traffic flow 

characteristics, compared with car-following (CF), the LC model has not received much attention 

until recently. With the realization of LC’s significant impacts on traffic safety and traffic 

congestion, efforts to model it have rapidly increased over the last decade. Briefly, LC is often 

distinguished as either discretionary or mandatory; this is because each of these LC types 

generally involves different decision-making processes and has different impacts on surrounding 

traffic. The primary purpose of a discretionary LC is to gain a speed advantage or a better driving 

environment, whereas the primary motivation of a mandatory LC is to reach the planned 

destination. Meanwhile, the modeling efforts in the literature roughly fall into two components: 

modeling the LC decision-making process (i.e., how a driver reaches the LC decision-making is 

not specified) and trajectory planning process. 

The following sections are organized as follows. Section 2.2 presents the background 

CAV technologies, such as definitions, taxonomies, impacts, and prospects. Section 2.3 

summarizes four typical LC models from previous studies and their related work, including the 

primary theory, functions, model calibration process, scenarios, contributions, and limitations. 

The impact analysis and performance measurement are presented in Section 2.4. Section 2.5 

illustrates the most used microscopic simulation platforms, specifically the PTV VISSIM, 

SUMO, and CARLA. Finally, a summary of the chapter is given in Section 2.6. 

2.2 Background of LC Process 

2.2.1 LC Process 

With the help of the information from V2V communication and localization, the LC decision 

module can predict surrounding vehicles’ movements and decide when and where to perform 

the LC operation. Then, the LC planning model can generate one or more reference 

trajectories from the current position to the target position, concerning safety and comfort.  

To accomplish the task, a trajectory-tracking controller should be developed to track the 

predefined trajectories according to the CAV state and road information. The differences 

between the actual trajectory and reference trajectory, in terms of errors on longitudinal and 
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lateral locations, and the CAV’s heading angle will be corrected. The vehicle control 

algorithms can then be converted into an input to the actuators. The desired speed and yaw 

rate are realized by controlling the torque and the steering wheel, respectively. These four 

key modules cooperate continuously to complete the task. Besides the addressed individual 

vehicle control technologies, cooperative maneuvers from multiple vehicles in traffic have 

been shown to impact overall traffic flow performance significantly. 

2.2.2 Scope 

In this report, the literature review on CAV’s LC model will be illustrated into two-parts: (1) 

four classic category models based on different theories and some typical constructed 

historical models, which play a significant role in this field, and (2) the summarization of 

their main contributions, highlights, and limitations, which would lay a solid foundation for 

processing research work. Additionally, some popular microscopic simulation software will 

be summarized to form the basis of further research. Considering the availability of LC 

model testing in the academic research, the previous studies on field test will not be 

discussed. 

2.3 Classic LC Model of Connected and Autonomous Vehicles 

2.3.1 Rule-Based Models 

2.3.1.1. Gipps LC Model 

Gipps et al. (1986) was among the first research teams to introduce a structure of LC for 

drivers who faced conflicting goals. Gipps’ model described the LC decisions and the 

execution of lane changes on freeways and urban streets as the result of three factors: LC 

possibility, the necessity for changing lanes, and LC desirability. More specifically, 

factors that impact LC in Gipps’ model included the possibility of changing lanes without 

an unacceptable risk of collision, the locations of permanent obstructions, the presence of 

heavy vehicles, the presence of special purpose lanes (e.g., transit lanes), the driver’s 

intended turning movement, and the possibility of gaining a speed advantage. In this 

model, a driver’s behavior fell into three zones, which do not depend on the driver’s 

behavior patterns over time. Thus, this model was deterministic, which implies that each 

of the rules is evaluated sequentially according to its importance. 

After Gipps’ pioneering work, many efforts either extend or improve his LC modeling 

framework. Trade-offs among considerations, such as the variation among different 

drivers and the inconsistency in a driver’s behavior over time, were ignored. 

Yang and Koutsopoulos (1996) developed and implemented a LC model in the 

microscopic traffic simulator, MITSIM. They classified LC as either mandatory or 

discretionary, and modeled LC in a sequential four steps: decision to consider a LC, 

choice of the target lane, searching for an acceptable gap, and executing the change. 

Although the rule-based modeling framework of that was similar to Gipps’, a distinct 

feature of their model was that, instead of treating LCD as a deterministic process, LC 

probability was introduced to make the model more realistic. 
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2.3.1.2. CORSIM Model 

Halati et al. (1997) developed a LC model that was implemented in CORiodr SIMulation 

(CORSIM), in which lane changes were classified as mandatory lane changing (MLC), 

discretionary lane changing (DLC), and random lane changing (RLC). MLC occurred 

when drivers merge onto a freeway or move to the target lane to make an intended turn or 

avoid obstructions (e.g., lane blockage and lane drop) in a lane. DLC was applied when 

lane changes are required for speed advantage. For instance, a driver may want to pass a 

slow-moving vehicle by changing to the left lane. RLC was applied when there is no 

apparent reason. RLC may or may not result in an advantage for the subject vehicle over 

its current position. In CORSIM, a certain percentage (the default value was 1%) of 

drivers were randomly selected to perform RLC. In this model, motivation, advantage, 

and urgency were considered as the three major factors behind a LC decision. The 

motivation to change lanes depended upon either the lead vehicle speed or the lead 

headway threshold. The advantage factor captured the benefits of driving in the target 

lane. The urgency of lane changing depended upon the number of lanes to change and the 

distance required to execute a complete LC maneuver. 

2.3.1.3. FRESIM Model 

FRESIM Model was firstly proposed in 2004. In the FRESIM DLC procedure, LC 

benefits were referred to as “Advantage.” Advantage was modeled through either the 

“lead factor” or “putative factor.” The disadvantage of staying in the current lane was 

represented by the lead factor. On the other hand, the putative factor represented the 

benefits of executing lane changes. Theoretically, a subject vehicle driver could select 

any one of the adjacent lanes (left/right) as the target lane for performing lane changes. 

Thus, the advantage was calculated for both adjacent lanes through the putative factor. 

The overall advantage for DLC was represented by the difference between the putative 

factor and the lead factor. It was then compared with a threshold value of 0.4. If the 

overall advantage was greater than the threshold value, a lane change occurred. So far, 

only the FRESIM DLC model has been discussed. The RLC and MLC were also 

incorporated in FRESIM. LC algorithms used in the FREeway SIMulator (FRESIM) and 

NETwork SIMulator (NETSIM) were similar. NETSIM was firstly proposed in the same 

year and improved in 2007. The only difference lied in measuring gaps between the 

subject vehicle and the lead/lag vehicles in the target lane. NETSIM measured the gaps in 

terms of time differences, and the gaps in FRESIM were a function of time headways and 

speed differences. 

2.3.1.4. ARTEMIS Model 

ARTEMiS, which is an abbreviation for Analysis of Road Traffic and Evaluation by 

Micro-Simulation, was a microscopic traffic simulation model developed by Hidas et al. 

(2002). Previously named Simulation of Intelligent TRAnsport Systems (SITRAS), this 

model described LC maneuvers based upon the courtesy of the lag vehicle in the 

destination lane. In this model, a lane change was triggered by required downstream 

turning movements, lane drops, lane blockages, lane use restrictions, speed advantages, 

or queue advantages. MLC occurred in the case of downstream turning movements, lane 
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drops, and lane blockages, and DLC happened in the early and middle-distance zones. 

The boundaries of different zones were defined in the same way as Gipps’ model.  

Hidas et al. (2005) modeled each vehicle as a driver-vehicle object (DVO), using an 

autonomous agent technique to describe drivers’ interactions involved in a complex 

decision-making process. DVOs can act as giving way, slowing down, or not giving way, 

based on road congestion conditions, individual driver characteristics, and the perception 

of a DVO in terms of whether another DVO was trying to move into its lane or not. 

According to this model, LC reasons were evaluated, and the results were classified as 

“essential,” “desirable,” or “unnecessary,” based on which a target lane was chosen. 

In ARTEMiS, gap acceptance model selection depended on LC modes. Two LC modes 

were proposed according to traffic conditions and the necessity of changing lanes: normal 

lane changing and courtesy/forced lane changing. A normal lane change occurred when a 

sufficient gap is available in the target lane. This LC mode was based on the Hidas’ car-

following model and can be expressed as: 1) acceptable deceleration (or acceleration) 

was required for the subject vehicle to follow the lead vehicle in the target lane, and 2) 

acceptable deceleration was required for the lag vehicle in the target lane, so that the 

subject vehicle can safely serve as its lead vehicle. 

2.3.1.5. Cellular-Automata Based LCD Model 

Cellular automata (CA) was historically proposed in the 1940s and popularized in the 

1980s to accurately reproduce macroscopic behavior of a complex system using minimal 

microscopic descriptions. A typical CA model constituted four key components: the 

physical environment, the cells’ states, the cells’ neighborhoods, and local transition 

rules, as denoted in (1). 

CA=(ζ,Σ,Ν,δ)                                                     (1) 

Where ζ is the physical environment represented by the discrete lattice; Σ represents the 

set of possible states; Ν denotes the neighboring cells; and δ is the local transition rules, 

which are commonly given by a rule table. 

CA models were frequently applied in various fields, including traffic flow modeling. 

Several notable traffic CA (TCA) models were developed for reproducing CF and LC 

behaviors, such as single-cell models, multi-cell models, deterministic models (e.g., 

Wolfram’s rule 184 (Wolfram, 1983), deterministic Fukui–Ishibashi TCA (Fukui and 

Ishibashi, 1996)); Stochastic models (e.g., Nagel–Schreckenberg TCA, STCA with cruise 

control, Stochastic Fukui–Ishibashi TCA (Nagel and Schreckenberg, 1992; Nagel, 1995); 

STCA with cruise control (Nagel and Paczuski, 1995), Stochastic Fukui–Ishibashi TCA 

(Fukui and Ishibashi, 1996)); Slow-to-start models (e.g., Takayasu–Takayasu TCA 

(Takayasu and Takayasu, 1993)); Velocity-dependent randomization TCA (e.g., 

Barlovic´ et al., 1998; Barlovic´, 2003). To demonstrate the setup of a typical TCA, a 

single-cell CA model using Wolfram’s rule 184 (which is defined later) for a single lane 

road was presented here. Other models can be seen in Chowdhury et al. (2000), Knospe 

et al. (2004), Nagel (1996), Schadschneider (2000, 2002), Schreckenberg et al. (2001), 

and Maerivoet and Moor (2005).  
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Like traditional traffic flow theories, the longitudinal movements of individual vehicles in 

TCA were also governed by CF. In fact, TCA was closely connected to traditional traffic 

flow theories. For example, a TCA can be derived from Gipps’ CF model (Gipps, 1981); 

and Daganzo (2004) proved two TCA models’ equivalence to the kinematic wave model 

with a triangular fundamental diagram. 

2.3.1.6. Game Theory Model 

The game theory model was based on the give way behavior in a merging situation when 

a traffic conflict arises between through and merging vehicles, in which they intend to 

influence each other. Kita et al. (1999) modeled this situation based upon the game theory 

and specified the game type, the number of players, and the repetition of games. They 

also considered the cooperative nature of the game. 

In this research work, it was assumed that the games are independent, and the strategies 

of each player (i.e., the payoff matrices) are known by the other player and 

noncooperative because both players had information on each other. These two players 

played two different strategies: “merge” and “pass” for the merging vehicle and “give 

way” and “do not give way” for the through vehicle. If the merging vehicle and the 

through vehicles were denoted by player 1 (X1) and player 2 (X2), respectively, the pure 

strategy of X1m was: 

𝑚 = {1: 𝑚𝑒𝑟𝑔𝑒, 2: 𝑝𝑎𝑠𝑠}. 

And the strategy of X2n was: 

𝑛 = {𝐼: 𝑔𝑖𝑣𝑒𝑤𝑎𝑦, ΙΙ: do not giveway} 

Whether a merging car merges or a through car gives way depended on the given 

situation with a certain probability. Both players used mixed strategies for this type of 

situation. For a mixed strategy game, a bi-matrix provided at least one equilibrium 

solutions.  

Kita et al. (1993) modeled on-ramp merging behavior using a discrete choice model, and 

the probability of giving way was estimated based on this game theory model. In Kita’s 

model, drivers compared the utilities of the current lane and the target lanes (left/right) 

and chose the target lane with a higher utility. In this case, the utilities perceived by the 

drivers captured the payoff of the players. 

For congested traffic conditions, Pei and Xu (2006) developed another LC model based 

on game theory for two types of LC maneuvers. Traffic information and experience were 

the basis of their model to describe lane changing maneuvers. In their model, cooperative 

and forced lane changes were also defined. The values of time and safety were the main 

factors affecting driver behavior. When drivers were safe situations, they would execute a 

LC maneuver. The game theory model was largely limited to describing the merging–

give way behavior in freeway merging areas and cannot be easily extended to other LC 

maneuvers.



10 

 

Table 2-1 Rule based LC models 

No. Author Year Rule based Data source Optimization Simulator Scenarios 

1 Gipps 1986 Gipps Model Australian Gain a speed advantage - Urban street 

2 Yang and Koutsopoulos 1996 Gipps Model - Gap distance MITSIM Freeway 

3 Halati 1997 Gipps Model - - - 
Mandatory LC; 

discretionary LC 

4 Kita 1999 Maximum-likelihood - 
Discrete choice model (LC 

probability) 
- Merging 

5 Hidas 
2002, 

2005 
Maximum-likelihood Video data Speed flow curve - 

On ramp; weaving 

area  

6 FHWA Off. Oper. Res 
2004, 

2007 

FREeway SIMulator 

(FRESIM); 
Field test  Gap acceptance FRESIM Freeway  

7 Pei and. Xu 2006 Maximum likelihood - 
Nonlinear 

programming  
- Congestion 
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2.3.2 Discrete-Choice-Based Models 

2.3.2.1. Ahmed’s model 

Ahmed et al. (1999) adopted utility theory to model the decision process of LC. The 

proposed LCD structure consisted of four latent (i.e., unobserved) levels of decision 

hierarchy in driving characteristics across the driving population and explanatory 

variables that affect driver behaviors. Ahmed extended the mandatory LC model to 

specifically accommodate heavily congested traffic, where forced merging behaviors 

frequently occur because of lacking normally acceptable gaps. Two levels were involved 

in this decision process: intention of merging into the target lane, and perception on the 

establishment of a mutual understanding on right of way. This two-level decision process 

was evaluated at every discrete time point and the forced merging begins. 

Ahmed subsequently implemented his model in MIcroscopic Traffic SIMulator 

(MITSIM). It was developed primarily to assess advanced traffic management systems 

and advanced traveler information systems at the operational level. Although his LC 

model was unable to capture the tradeoffs between MLC and DLC decision processes, it 

accurately described the differences between drivers’ MLC, DLC, and FM decisions. For 

instance, in MITSIM, drivers were unable to overtake when mandatory considerations are 

active. Similar to the Gipps model, the existence of an MLC was determined based upon 

the distance of the subject vehicle to the downstream exit ramp. In addition, a dummy 

variable was introduced to capture the differences in acceptable gap values between a 

passenger car and a heavy vehicle when the heavy vehicle was the subject. Although this 

very coarse and simplistic method accounted for the differences in operational 

characteristics of these two vehicle types, the aforementioned models incorporated a rigid 

separation between MLC and DLC, which was unrealistic in real-life driving. 

2.3.2.2. Toledo et al’ s Model 

Actually, the boundaries between mandatory LC and discretionary LC exist sometimes 

since the discretionary LC usually would be considered first before mandatory LC. And 

the previous mentioned model failed to capture the trade-offs between them because a 

rigid separation was assumed among them. Moreover, the mandatory LC situation was 

not always perceived by the driver (except for special cases like on-ramp merging 

traffic). Hence, the conditions that trigger a mandatory LC had not been estimated in the 

models above.  

To overcome this problem, Toledo et al. (2002) proposed an integrated LC model where 

mandatory and discretionary conditions were joined together in a single utility model. 

The model captured the trade-offs between the utility of being in the correct lane (i.e., the 

mandatory LC consideration) and that of the speed advantage offers by a faster lane (i.e., 

the discretionary LC consideration). The model also considered a driver specific random 

term that represents unobservable characteristics of the driver and correlations between 

observations of the same driver over time. Parameters of the model were jointly estimated 

using vehicle trajectories collected from I-395 Southbound, Arlington, Virginia, US. And 

results showed the importance of incorporating trade-offs between the mandatory and the 

discretionary LC into the model. 
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Although driver characteristics (e.g., level of aggressiveness, alertness) naturally had 

significant impact on various aspects of lane change decision making process, they were 

missing from most of the existing LCD models. To explicitly incorporate the effect of 

driver characteristics, Sun and Elefteriadou (2011) conducted a focus group study to 

identify and understand drivers’ concerns and responses under various LC scenarios. 

From the focus group study, driver types, and reasons and main factors for each driver 

type in lane changing decision-making processes were revealed and linked. To observe 

drivers’ actions under various LC scenarios, and to obtain field-measured values for the 

important factors identified in the focus group study, field data were collected using 

instrumented vehicles. 

2.3.2.3. Markov Process Based LCD Models 

LC had also been modeled as a Markov process. The first Markov-based LC model was 

perhaps proposed in Worrall et al. (1970), where a stochastic LC model is developed as a 

homogeneous Markov chain and calibrated using data collected on a section of 6-lane 

freeway in Chicago.  

In a broader context of treating human as a device with a large number of unobservable 

internal mental states, Pentland and Liu (1999) modeled the driving behavior using a 

Markov dynamic model. LC experiments using driving simulator were used to 

demonstrate the soundness of the proposed modeling framework. LC was broken down 

into a chain of states: (1) a preparatory centering the car in the initial lane; (2) looking 

around to make sure the target lane is clear; (3) steering to initiate LC; (4) the change 

itself; (5) steering to terminate the change; and (6) a final re-centering of the car in the 

target lane. Results supported the view that human actions are best described as a 

sequence of control steps rather than as a sequence of raw positions and velocities. In the 

case of driving, this meant that the action is defined by the pattern of acceleration and 

heading.  

Sheu and Ritchie (2001) modeled the mandatory LC induced by incidents using the 

Markov process. All state variables in the stochastic system followed homogeneous 

Gaussian–Markov processes. Unlike the previous studies in which stable traffic 

conditions were often assumed to justify the use of a time-invariant transitional LC 

probability, a noise term which follows a Gaussian process was introduced to 

accommodate time-varying traffic conditions that are caused by incidents.  

The models described above in this section aimed to reproduce LC frequency but could 

not explain the decision process: why or why not LC occurs. Thus, they were not suitable 

for microscopic simulations. This limitation was overcome in Toledo and Katz (2009) by 

integrating a hidden Markov model (HMM) with the utility theory-based modeling. 

2.3.2.4. Hazard-based (Survival) LCD Models 

Hamdar (2009) criticized previous LC models for neither sufficiently nor explicitly 

considering stochasticity and possibly unsafe character of the cognitive processes (e.g., 

perception, judgment, and execution) followed by drivers. Thus, a hazard-based duration 

model was proposed. Unlike rule-based LC models, the hazard-based duration model 

treated driver behaviors as a multiple duration process: Free flow, CF, or LC. Three 
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parametric hazard functions were adopted by Hamdar (2009): the increasing monotonic 

dependence; non-monotonic dependence; and the third one was based on an increasing 

positive correlation between duration and hazard before a given time, followed by a 

constant hazard value. The proportional hazard form was employed to accommodate 

effects of exogenous factors (e.g., headways, speed, speed difference, etc.). 

It was expanded to accommodate the fact that multiple types of events may end a CF, LC, 

or free-flow process. Two strategies were discussed: (1) the utility-based strategy: each 

potential event that ends a particular state was considered as an alternative with a given 

utility. Then the appropriate exit strategy was determined according to these utilities; and 

(2) the hazard-based strategy: instead of using utilities to determine the appropriate exit 

strategy, the exit strategy with the associated highest hazard was selected. It was not clear 

which strategy was employed in their study. The NGSIM vehicular trajectories (Alexiadis 

et al., 2004) were used to calibrate and validate their model.
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Table 2-2 Discrete choice based LC model studies 

No. Author Year Rule based Data source Optimization Simulator Scenarios 

1 Ahmed 1996 Discrete choice Vehicle trajectories Gap distance - Freeway 

2 Ahmed 1999 Discrete choice 
Vehicle trajectories from I-

93, Boston, US 
Gap distance SUMO Freeway 

3 Toledo 2003 Discrete choice 

Vehicle trajectories from I-

395 Southbound, 

Arlington, Virginia, US 

Driver behaviors  

(steering angle, acceleration, 

deceleration) 

VISSIM 

SUMO 
Freeway 

4 
Sun and 

Elefteriadou 

2011, 

2012 
Markov Process 

Field data from 

instrumented vehicles 
Driver characteristics - 

Congested 

arterial 

5 Hidas 
2002, 

2005 
Markov Process Video Speed-flow curves  VISSIM 

Urban & 

freeway 

6 Worrall 1970 Markov Process 
A section of 6-lane freeway 

in Chicago 
Probability of LC SUMO Freeway  

7 
Pentland and 

Liu 
1999 Markov Process Driving simulator 

Positions and velocities  

(Acceleration, heading) 
Driving simulator Merging area 

8 
Sheu and 

Ritchie 

2001,2

012 
Markov Process Loop detector data 

Driver behaviors  

(steering angle, acceleration, 

deceleration) 

VISSIM Incident  

9 
Toledo and 

Katz 
2009 Markov Process 

Vehicle trajectories from I-

395 southbound in 

Arlington, Virginia, US 

Positive and significant state-

dependency coefficient 
VISSIM Incident 

10 Hamdar 2009 Hazard 
NGSIM vehicular 

trajectories 

Perception, judgment, and 

execution  
VISSIM Intersection  

 

Table 2-3 Intensive based models 

No. Author Year Model Based Data source Optimization model Simulator Scenarios 

1 Kesting 2007  European countries MOBIL  Congestion 

2 Schakel 2012 

 Segment of A20 

Freeway near 

Rotterdam, Netherlands 

Speeds of the free-flow condition  Freeway 
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2.3.3 Incentive Based Models 

2.3.3.1. Minimizing Overall Braking Included by Lane Changes (MOBIL) 

Kesting et al. proposed a novel logic for simplifying and modeling LCD, which is 

MOBIL. The MOBIL LC model was based on two criteria: incentive and safety. The 

incentive criterion measured the attractiveness of a given lane based on its utility, and the 

safety criterion measured the risk associated with lane changing (i.e., acceleration). 

The MOBIL rules were applied for simulation of multilane traffic in the intelligent driver 

model (IDM). In IDM, two types of passing rules were considered for lane changes: 

symmetric and asymmetric. The symmetric passing rules were based on safety and 

incentive criteria. They were applied when changing to the right lane is not strictly 

forbidden. When the deceleration of the follow vehicle in the target lane was equal to the 

IDM braking deceleration, the safety criterion was satisfied. For a lane change to happen, 

the deceleration of the follow vehicle should also not exceed a certain 𝑏𝑠𝑎𝑓𝑒 limits, as 

shown below. Thus, 

𝑎′(𝐹′) > −𝑏𝑠𝑎𝑓𝑒                                                        (2) 

Where 𝑎′(𝐹′) is the deceleration of the immediate follower in the target lane; 𝑏𝑠𝑎𝑓𝑒 

denotes the safe limit. For countries without such asymmetric lane usage rules like US, 

the desirability rule was: 

�̃�𝑐 − 𝑎𝑐 + 𝑝(�̃�𝑛 − 𝑎𝑛 + �̃�0 − 𝑎0) > ∆𝑎𝑡ℎ                                    (3) 

Where 𝑎𝑐 and �̃�𝑐 denote the lane changer’s acceleration before and after the lane change, 

respectively; other variables are the same as previously defined.  

As indicated in the lane changing rules above, MOBIL considered the advantage or 

disadvantage of the followers via a politeness factor. By adjusting this parameter, the 

motivations for lane changing can be varied from purely egoistic to more cooperative 

behavior, e.g., increasing the combined accelerations of the lane changer and affected 

neighbors.  

Using accelerations in MOBIL had two main advantages: (1) the lane change decision-

making process was dramatically simplified, which leads to the parsimoniousness of 

MOBIL; and (2) accelerations could be readily calculated with an underlying 

microscopic longitudinal traffic model, which enables MOBIL to be easily integrated 

with a typical CF model. However, the logic of MOBIL had yet to be empirically 

justified, and MOBIL itself had yet to be calibrated and validated. 

2.3.3.2. LC Model with Relaxation and Synchronization (LMRS) 

Schakel et al. (2012) proposed a LMRS, based on drivers’ desire to change lanes. The 

desire was a combination of the route, speed, and keep-right incentives. A tradeoff was 

considered within the combination of incentives, with the route incentive being dominant. 

The following equation was a sample combination of incentives representing the desire to 

change from lane i to lane j: 
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𝑑𝑖𝑗 = 𝑑𝑟
𝑖𝑗

+ 𝜃𝑣
𝑖𝑗

∗ (𝑑𝑠
𝑖𝑗

+ 𝑑𝑏
𝑖𝑗

)                                         (4) 

Where, 𝑑𝑖𝑗 is the combined desire to change lane from i to j; 𝑑𝑟
𝑖𝑗

 denotes the desire to 

follow a route; 𝑑𝑠
𝑖𝑗

 represents desire to gain speed; 𝑑𝑏
𝑖𝑗

 represents desire to keep right; and 

𝜃𝑣
𝑖𝑗

 is the voluntary (discretionary) incentives. 

The total desire determined drivers’ LC behaviors. The range of meaningful desire was 

from -1 to 1. Negative values represented that a lane change is not desired, and positive 

values meant that the driver wants to change lane. Depending upon the desire value, 

Schakel et al. (2012) further classified lane changes as free lane changing (FLC), 

synchronized lane changing (SLC), and cooperative lane changing (CLC). Thus,  

0 < 𝑑𝑓𝑟𝑒𝑒 < 𝑑𝑠𝑦𝑛𝑐 < 𝑑𝑐𝑜𝑜𝑝 < 1                                                 (5) 

The gap acceptance module in this model was similar to MOBIL. In addition, this model 

considered an applicable headway for gap acceptance. A gap was accepted if the 

accelerations of the subject vehicle and the new follower were larger than a safe 

deceleration threshold. According to this model, large decelerations and short headways 

could be accepted for a large desire, and the relaxation of headway values was 

exponential with relaxation time. The subject vehicle driver would synchronize her/his 

speed, if the LC desire was above the synchronization threshold (𝑑𝑠𝑦𝑛𝑐). She/he would 

synchronize the speed with the target lane speed by applying a maximum deceleration, 

which is both comfortable and safe. A gap can be created if an adjacent leader LC desire 

was above cooperation threshold. 

2.3.4 Artificial Intelligence Models 

2.3.4.1. Fuzzy-logic-based Models 

Fuzzy-logic-based models considered the uncertainty of lane changing maneuvers, and 

the natural or subjective perception of real variables was also considered. The unique 

nature of fuzzy logic models was that they can translate nonlinear systems into IF-THEN 

rules. The following was a typical IF-THEN LC rule: 

 𝐼𝐹: (𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑖𝑠 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑓𝑜𝑟 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒) 𝑎𝑛𝑑  

(𝑡ℎ𝑒 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒)𝑎𝑛𝑑  

(𝑡ℎ𝑒 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒)𝑎𝑛𝑑  

(𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑛𝑒 𝑖𝑠 𝑙𝑜𝑤) 𝑎𝑛𝑑 

(𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒 𝑖𝑠 ℎ𝑖𝑔ℎ) 

𝑇𝐻𝐸𝑁: (𝑣𝑒ℎ𝑖𝑙𝑐𝑒 𝑖 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒). 

Using fuzzy logic was often reported to be capable of better mimicking a driver’s actual 

decision process because fuzzy logic was well equipped to handle human’s cognitive and 
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perceptional uncertainties frequently encountered in real-world LC processes. 

Technically speaking, all the models discussed above can be fuzzified. For example, 

Yeldana et al. (2012) proposed a TCA model based on fuzzy logic. Several fuzzy logic-

based LCD models were developed (McDonald et al., 1997; Brackstone et al., 1998; Das 

et al., 1999; Wu et al., 2000; Moridpour et al., 2009). 

2.3.4.2. Artificial Neural Network (ANN) Models  

ANN models process information using functional architecture and mathematical models 

that are similar to the neuron structure of the human brain. These models learn human 

behaviors from training and can demonstrate those human behaviors in a new situation. 

In recent years, neural networks have also been used for modeling driver behavior in the 

transportation field. For instance, Hunt and Lyons (1994) predicted drivers’ LC decisions 

using neural networks on dual carriageways. Neural network models were completely 

data driven and required supervised training by field-collected traffic data before they 

could be used to predict driving behavior. Their dependence on the availability of field-

collected traffic data was the main disadvantage of neural network models, although 

previous results showed that they can accurately predict LC behavior.  

Dumbuya et al. (2009) developed neural driver agents (NDAs) for modeling LC 

maneuvers. A multilayer NDA model was designed and implemented. A back-

propagation training algorithm was used to train the NDA model, which takes inputs such 

as current direction of the vehicle, current speed, distance from the vehicle, preferred 

speed, and current lane. The output of the model included new direction and new speed. 

This NDA model learnt LC behavior from known situations using data collected from the 

Transport Research Laboratory (TRL) driving simulator. The authors then used the fitted 

NDA model to predict driver behavior for unseen situations.  

Codevilla et al. (2018) proposed a conditional imitation learning method to generate 

driving policies as a chauffeur to handle sensorimotor coordination. The continuous 

response to navigational commands helped make decisions to avoid obstacles in the 

experiments.  

Xu et al. (2017) used the long short-term memory architecture to encode the 

instantaneous monocular camera observations and previous vehicle states, and their 

network was then trained to imitate drivers’ realistic behaviors based on a large-scale 

video dataset. 

These methods were in an end-to-end manner, benefiting from the most significant 

advantage of supervised learning that the relationship between sensor inputs and model 

outputs can be directly mapped by using the developed network (Xu et al., 2017). 

2.3.4.3. Reinforcement Learning based Models 

With the rapid development of vehicle-to-vehicle and vehicle-to-infrastructure 

technology, LC models in a connected environment (i.e., vehicles are connected and 

assisted by the system where the surrounding traffic data are shared) instead of a 

traditional environment (i.e., a conventional environment where there is no assistance 

system and drivers have to make the decision based on their experience) have been 
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proposed frequently in the literature. Among the learning-based methods, reinforcement 

learning (RL) has obtained a lot of attention in recent years and has achieved superhuman 

performance in this field.  

Mnih et al., (2015); Hasselt et al., (2015); Schaul et al., (2016); Duan et al., (2021) made 

a major breakthrough in deep reinforcement learning (DRL) in recent years. They started 

to apply DRL to address the driving decision-making problems in autonomous driving 

(Shin et al., 2019; Long et al., 2018; Li et al., 2019; Ye et al., 2019; Zhu et al., 2020). 

DRL-based methods can greatly decrease the heavy reliance on a large amount of data 

because they do not need labeled driving data for training (Zhu et al., 2018; Moghadam 

and Elkaim, 2019; Hoel et al., 2020). 

Kahn et al. (2017) proposed an uncertainty-aware reinforcement learning algorithm to 

learn obstacle avoidance strategies by using uncertainty to estimate driving risk. 

He et al. (2018) implemented a novel RL approach to enable dynamic orchestration of 

networking, caching, and computing resources while they propose a multi-agent actor-

critic method to learn better resource management strategies to meet vehicle services. 

Wang et al. (2018) proposed a reinforcement learning-based approach to train the agent 

to learn an automated lane change behavior so that it could intelligently make a lane 

change for collision avoidance under unforeseen scenarios.  

Long et al. (2018) presented a DRL-based system-level scheme for multi-agents to plan 

their own collision-free actions without observing other agents’ states and intents.  

Moghadam and Elkaim (2019) introduced DRL into a hierarchical architecture to make a 

sequential tactical decision (e.g., lane change) for AVs to avoid collisions, and then the 

tactical decision was converted to low-level actions for vehicle control. Unlike supervised 

learning methods, DRL-based methods can compensate for the high cost of data 

collection in dangerous scenarios by training models in virtual simulation environments 

with affordable trial-and-errors. 

Bouton et al. (2019) proposed a probabilistic guarantee-based reinforcement learning 

strategy for autonomous driving at intersections.  

Mokhtari and Wagner (2021) developed a risk-based decision-making framework that 

integrates risk-based path planning with reinforcement learning-based control for safe 

driving. Although risk assessment has already been considered in some of the DRL-based 

decision-making methods, the examination of risk assessment consideration for 

autonomous driving in lane change scenarios still needed to be further investigated (Chen 

et al.)
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Table 2-4 Artificial intelligence LC model studies 

No. Author Year Model based  Optimization  Simulator Scenarios 

1 McDonal 1997 Fuzzy logic Mimic drivers’ decision-making process on LC - Freeway  

2 Brackstone 1998 Fuzzy logic Mimic drivers’ decision-making process on LC VISSIM Freeway 

3 Das 1999 Fuzzy logic Mimic drivers’ decision-making process on LC VISSIM Freeway 

4 Wu 2000 Fuzzy logic Mimic drivers’ decision-making process on LC - Merging  

5 Moridpour 2009 Fuzzy logic Mimic drivers’ decision-making process on LC - Freeway 

6 Ross 2010 Fuzzy logic Mimic drivers’ decision-making process on LC - Freeway 

7 Yeldana 2012 Fuzzy logic Mimic drivers’ decision-making process on LC - Freeway 

8 H.Yang  1992 Deep learning Predict drivers’ driving behavior in the next time step VISSIM Merging  

9 Hunt  1994 Deep learning Predict driver behavior  VISSIM Urban  

10 Dumbuya 2007 Deep learning Cooperative LC process 

Neuro 

Solutions 

software 

Urban 

11 Li 2018 Deep learning 
Minimize the errors between target state and the 

predicted state 
SUMO Merging 

12 Suh 2018 Deep learning Cooperative LC process SUMO Freeway  

13 Codevilla  2018 Deep learning 
Conditional imitation learning method to generate 

driving policies  
VISSIM Merging 

14 
Hasselt 

 
2015 Reinforcement learning Driving decision making for LC VISSIM Static objectives  

15 He  2018 Reinforcement learning Driving decision making for LC CARLA Freeway 

16 
Moghadam and 

Elkaim 
2019 Reinforcement learning 

Compensate for the high cost of data collection in 

dangerous scenarios 
CARLA Dangerous area 

17 
Mokhtari and 

Wagner 
2021 Reinforcement learning Risk based path planning  CARLA Freeway  
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2.4 Impacts on Network Performance 

The impacts of autonomous vehicles could be studied by the changes in terms of the 

demand and behavior side, the supply of mobility services, and the network and facility 

operational performance. Unfortunately, the potential changes in the supply of transportation and 

mobility at the urban scale are difficult to predict and characterize for the purpose of developing 

specific planning tools and forecasting the demand for these services over time. 

Fagnant and Kockelman (2015) conducted some research related to autonomous 

capabilities and argued that it would preclude individual vehicle ownership altogether in favor of 

shared mobility fleets.  

Mahmassani (2016) adopted a broader portfolio of services, possibly in conjunction with 

third parties, the disappearance of conventional fixed-route, fixed-schedule bus service in the 

most low-density communities, supplanted by driverless, and personalized service at low density. 

The shared hybrid forms at medium densities and a greater focus on frequent rapid service along 

the dedicated right of way (rail and/or bus rapid transit) in higher density travel corridors were 

considered.  

2.4.1 Impacts on Traffic Flow 

The simplest way to understand the potential impact of CAVs on traffic flow is to go back to 

the basics of traffic science, namely to the interrelation between spacing, density, speed, and 

flow. It is doubtable that the traffic flow of the CAV environment is the same as the HDV, 

not mentioned to the mixed traffic flow.  

In practical traffic situations, beyond the deployment status of the connectivity protocols and 

factory settings for acceptable following distances, at least three factors mitigate these 

increases: (1) weaving and lane changing losses in multilane situations; (2) mixed traffic 

implications under most deployment scenarios; and (3) flow stability considerations, 

particularly at high speed in heterogeneous environments. 

Talebpour, Mahmassani, and Hamdar (2015) and Talebpour, Mahmassani, and Bustamante 

(2016) developed a game-theoretic LC model that captures the dynamic interactions between 

drivers during discretionary and mandatory LC maneuvers. And a game structure to model 

the behavior when drivers were not aware of the nature of the LC maneuver is introduced 

(i.e., mandatory vs. discretionary). 

2.4.2 Performance Measurement  

Talebpour and Mahmassani (2016) estimated the CAV simulation results of traffic flow 

regarding the stability and throughput of mixed traffic streams with varying compositions of 

autonomous and/or connected vehicles along with regular vehicles. The following part will 

illustrate these measurements from the above two. 

2.4.2.1. Stability Analysis 

Talebpour and Mahmassani (2016) first examined the stability question by extending the 

analytical approach developed by Ward (2009) and applied it in turn to systems with varying 
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degrees of connected vehicles in one case, then autonomous vehicles in the other. The 

analytical derivation was applied to Hamdar et al.’s (2018) car following model for regular 

vehicles. 

Treiber, Kesting, and Helbing (2007) proposed the simulation-based investigation of string 

stability by adapting the methodology. The occurrence of different stability regimes (stable, 

oscillatory, and collision) was investigated for different platoon sizes, reaction times, and 

market penetration rates of connected and autonomous vehicles. 

Treiber, Kesting, and Helbing’s (2007) categorized stable, oscillatory, and collision regimes. 

The collision regime was identified that if perturbations lead to a crash at some point in the 

simulation. Finally, the oscillatory regime was identified if neither of these cases is 

recognized. 

2.4.2.2. Throughput Analysis 

Throughput effects under different market penetration rates of CAV are examined on a 

hypothetical one-lane highway with an on-ramp located in the middle of the segment. 

Talebpour and Mahmassani (2016) conducted that at high autonomous vehicle market shares, 

and the throughput was nearly doubled while the scatter was virtually eliminated, with no 

flow breakdown over the range of demand loading considered. 

2.5 Simulation Platforms of LC Model  

CAVs are a big part of the automotive industry’s overall growth trend that may be utilized to 

improve transportation safety, expand mobility options, lower expenses, and provide new job 

possibilities. Thus, a complete examination of connected and autonomous driving is required 

before the large-scale implementation, which may be done affordably and efficiently using a 

reliable simulation platform. Current traffic simulators ease the operation of CAVs by 

offering incremental enhancements to traditional traffic flow modeling approaches, which 

cannot replicate the features of real-world connected and autonomous vehicles. 

Generally, a microscopic traffic simulator consists of three major components: (1) a 

transportation network to define road topology at a network level; (2) a traffic demand 

generator to create traffic flow running in the predefined traffic network; and (3) a car-

following and LC models to regulate individual vehicle driving behavior. In microscopic 

traffic models, vehicles are represented as separate agents, whose motion is governed by 

specific rules. Those agents may be in interaction, which also has an impact on their 

behaviors. Some typical simulators include PTV VISSIM, SUMO, and CARLA. 

2.5.1 PTV VISSIM  

VISSIM has been a widely used tool for simulating connected and automated vehicles. It 

provides different interfaces that allow adapting internal driving parameters: car-following 

model, lane change behavior, operating speed, and acceleration. VISSIM models multi-

modal realistic transportation operations and creates the best conditions for testing different 

traffic scenarios before their realization. It has various features, such as traffic flow 

modeling, traffic light control, vehicle queue length analysis, pedestrian simulation, and 

script-based modeling. Script-based modeling was one of the VISSIM’s features that are very 
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useful in the development of traffic control algorithms in the research studies of P. Gora et 

al., (2020) and E. Joelianto et al., (2019). 

2.5.2 SUMO 

SUMO allows modeling of intermodal traffic systems including road vehicles, public transit, 

and pedestrians. Included with SUMO is a wealth of supporting tools that handle tasks such 

as route finding, visualization, network import, and emission estimation. SUMO can be 

enhanced with custom models and provides various APIs to remotely control the simulation 

via a general traffic control interface (TraCI), which could make it possible to bi-

directionally couple traffic simulators with other software. 

2.5.3 CARLA 

A lot of previous projects described how to use this software to simulate the microscopic LC 

behavior, such as A. Dosovitskiy et al., (2017). Besides, the literature review paper by F. 

Rosique et al., (2019) also mentioned the great achievement of this software in the CAV 

study. 

2.6 Summary 

A decent number of studies have been conducted on CAV lane changing from different 

disciplines (e.g., electrical engineering, computer science, transportation engineering, and 

mechanical engineering) with different focuses (e.g., LC model, impact analysis, and 

simulation platforms) in the last decades. Yet the existing studies are relatively segregated by 

disciplines or perspectives.  

In summary, there is a clear need to develop a comprehensive model that captures the 

(mandatory or discretionary) LC decision-making process and its consequent impact on 

surrounding traffic. In developing a new LC model, the multi-level evaluation strategy 

should be generally preferred: at the macroscopic level, outputs of the model should be 

consistent with typical traffic flow characteristics; at the microscopic level, lane changing 

decisions need to be matched with observations with a reasonably low prediction error rate, 

and trajectories of the vehicles involved in LC should be close to actual trajectories in our 

future work. 
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Chapter 3.  Data Exploration 

3.1 Introduction 

This chapter describes the National Generation SIMulation (NGSIM) database that is 

used as the data source for this project. The data was collected through a network of 

synchronized digital video cameras. NGVIDEO, a customized software application developed 

for the NGSIM program that transcribed the vehicle trajectory data from the video. This vehicle 

trajectory data provided the precise location of each vehicle within the study area every one-tenth 

of a second, resulting in detailed lane positions and locations relative to other vehicles. So, this 

kind of ground truth data could be used to simulate human driving behaviors. 

The data source and preprocess work will be illustrated in this chapter. The technical 

details of LC trajectory data extraction will be described in the following parts. To identify and 

analyze the LC trajectory more specifically, the Support Vector Machine (SVM) classification 

model is applied to further analyze LC driving behavior.  

3.2  Data Source 

The dataset used to estimate and validate the model was recorded in Los Angeles, 

California from the plane of NGSIM proposed by the FHWA. The I-80 data file was eastward 

vehicle trajectories captured by 7 cameras synchronously on 13th, April 2005. The data was 

transferred every tenth of a second. The coverage area of the camera is about 500 meters, 

composed of six main lanes and one ramp. The supporting information contains the precise 

position, speed, and acceleration. In the past, it was used for driving behavior analysis, traffic 

parameters calibration, car-following and lane changing trajectory prediction.  

 

The specific labels of this dataset are vehicle number, types, geometric features, lateral 

positions, vertical positions, lanes, speed, acceleration, and front-rear cars. The data description 

is shown in Table 3-1. Since every vehicle that appeared in the monitoring section owns one 

unique ID, its trajectory and other surrounding vehicles could be traced.  

Table 3-1 Description of raw data 

Name Description Units 

Vehicle ID 
According to the order entering the monitoring section; 

Identification by the license plate number 
- 

Frame ID The time series is numbered from the beginning of detection - 

Total frames Total number of vehicles in this frame - 

Total time Calculated at 0 hours, 1970.1.1 ms 

Partial x axis 
The front center of the vehicle is X deviated from the starting point of 

the road in the monitoring area 
ft 

Partial y axis 
The front center of the vehicle is Y deviated from the starting point of 

the road in the study area 
ft 

Overall x axis The partial X relative to the CA State Plane Ⅲ in NAD83 ft 

Overall y axis The partial Y relative to the CA State Plane Ⅲ in NAD83 ft 

Length of vehicle Geometric length of vehicles ft 

Width of vehicle Geometric width of vehicles ft 

Vehicle type 1-motor, 2-car, 3-trunk - 

Vehicle speed Vehicle speed at current moment ft/s 

Vehicle acceleration Vehicle acceleration at current moment ft/s 
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Lane ID lane at current moment - 

Front vehicles Front vehicles ID - 

Rear vehicles Rear vehicles ID - 

Space headway The distance between the vehicle and the front vehicle ft 

Headway The time between the vehicle and the front vehicle s 

 

3.3 Data Preprocessing 

3.3.1 Data Filtering 

3.3.2.1. Vehicle Type Identification 

The NGSIM data set divides vehicles into three types: motor, car, and others (truck, bus), 

as shown in Table 3-2. The proportion of cars on the I-80 expressway is about 76.06% 

which plays the dominant role among all vehicle types during the detection period. 

Therefore, the vehicle type was selected as “2”, which is the car corresponding 

trajectories, to gain a reasonable LC trajectories sample size. 

Table 3-2 Summary of vehicle types in I-80 section 

Vehicle type 
I-80 road segment 

Number of vehicles (PCU) Ratio (%) 

1-motor 25 8.80% 

2-car 216 76.06% 

3-track, bus 43 15.14% 

3.3.2.2. LC Scenarios Identification 

From Figure 3.1, the observed section of I-80 is composed of 7 lanes, in which lane 1 to 

lane 5 are the main lanes, and lane 6 and lane 7 are merging (diverging) lane. For that, the 

most frequent mandatory LC appears in lane 6 and 7. Typically, relative low speed and 

frequent lateral movement are the two most significant characteristics of these traffic 

flows. This is out of the scope of this research. The LC trajectories on lane 1-5 are taken 

and will be studied. 

 
Figure 3.1 Geometric Composition of I-80 Highway 
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3.3.2.2. LC Trajectory Extraction 

To improve the identification accuracy, some constraints have been assigned in this study: 

(1) The LC that occurred at the merging and diverging lane is not studied. 

(2) The LC that occurred at the boundary of the video detection segment is not studied. 

(3) The lateral movement of vehicles is constrained by the following equation.  

                                                                {

𝑥1+𝑥2+𝑤

2
− 𝑐 < 𝑥𝑠 <

𝑥1+𝑥2−𝑤

2
𝑥1+𝑥2+𝑤

2
< 𝑥𝐹 <

𝑥1+𝑥2−𝑤

2
+ 𝑐

                                      (1)  

Where, 𝑥𝑠、𝑥𝐹 is the lateral position at the beginning of LC; 𝑥1、𝑥2 is the lateral 

position of vehicles changing lane ID at the front and rear moments; (𝑥1 + 𝑥2)/2 is the 

central position of lane; w is the vehicle width; and c is the lane width, assuming it is 

3.75m in average. 

 
Figure 3.2 Lateral Constraints of Vehicle Lane Changing 

The start and end point of LC are limited in the shadow area in Figure 3.2. Based on these 

assumptions and constraints, a total number of 210 vehicle trajectories are extracted on I-

80 for further analysis in this project. 

3.3.2 Data Filtering Summary  

Based on these 210 single complete LC trajectories, the cooperative LC trajectories are 

further extracted by the surrounding vehicle IDs which have an interactive relationship with 

them. Figure 3.3 shows some representative statistical results, and the vehicle number of 0 

indicates that there is no vehicle in this interactive location. 

 

Figure 3.3 Statistical results of interaction relationship between lane changing vehicles 

3.3.3 Trajectory data smoothing 

 When the raw data was filtered, some noise appeared frequently in the vehicle speed and 

acceleration distribution. Since vehicle speed and acceleration are differential derived 
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parameters of longitudinal positions, abnormal unstable fluctuations will occur in the time-

varying curves of them, which cannot be directly applied to the study of LC driving behavior 

and related models. The theory of NGSIM dealing with speed and acceleration is shown as: 

                                                             {
𝑣(𝑡) =

𝑥(𝑡)−𝑥(𝑡−1)

𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝

𝑎(𝑡) =  
𝑣(𝑡)−𝑣(𝑡−1)

𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝

                                                  (2) 

Where, x(t) is the longitudinal position at t; v(t) and a(t) are the differential speed and 

acceleration at the same time respectively; and the time step is the time interval of each 

frame, which is 0.1s. 

According to the calculation method adapted by NGSIM, the detection error of longitudinal 

position at each moment would be amplified as ten times when calculating the vehicle speed, 

and hundreds of times when calculating vehicle acceleration.  

Besides the calculation error, some individual perception can also be observed in the 

distribution of vehicle speed and acceleration. As for absolute value of acceleration, most of 

them are 3~3.5m/s2, which is abnormal from the reality that drivers always accelerate or 

brake continuously, especially during the peak hour under dense traffic scenarios. These 

result in the velocity and acceleration noise when measured.  

To eliminate these noises, the Symmetric Exponential Moving Average (SEMA) method is 

adapted to deal with all trajectories before a deep data mining. The theory of SEMA can be 

expressed by: 

                                                       {
𝑥𝛼

’ (𝑡) =
∑ 𝑥𝛼(𝑡𝑘)𝑒−|𝑖−𝑘|/Δ𝑖+𝐷

𝑘=𝑖−𝐷

∑ 𝑒−|𝑖−𝑘|/Δ𝑖+𝐷
𝑘=𝑖−𝐷

𝐷 = max {3Δ, 𝑡 − 1, 𝑁𝑚 − 𝑡}
                                                          (3) 

Where, 𝑥𝛼
′ (𝑡) represents the approximate position of a certain vehicle α at t, 𝑥𝛼(𝑡𝑘) denotes 

the original position of this vehicle at 𝑡𝑘, 𝑁𝑚 represents the number of trajectory data, D is 

the smooth window width when considering boundary data. Δ is the smooth window width 

when considering intermediate data, Δ =
T

𝑑𝑡
= 10𝑇, T is the smooth time, which have not 

been determined by the investigators. Thiemann et al. (2008) recommended that the time of 4 

seconds can rapidly decrease the acceleration variance at very small smooth time. Since the 

vehicle acceleration and speed are deduced step by step, the amplification error of 

longitudinal position is much less in speed than acceleration. Simultaneously, it takes T = 

0.5s and T=1s respectively as the smooth time for position and speed through comparing 

different parameters. Based on the testing result, T=0.5, 1, 4s have been taken as the smooth 

time to deal with the position, speed, and acceleration of vehicle trajectories finally. Figure 

3.4 provides an example of the smoothing.  
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Figure 3.4 The smoothing results of vehicle trajectory data with ID = 1773 

 

3.4 LC Intention Identification Based on SVM 

3.4.1 Mechanism of SVM  

SVM is a binary classification model, which aims to separate all samples by a hyper-plane 

limited by the principle of interval maximization. Hence, the classification process can be 

transferred into a convex quadratic programming problem, which helps obtain stronger 

generalization ability and a global optimal resolution at same time. There are three types of 

SVM, liner separation SVM, approximate liner separation SVM and nonlinear separation 

SVM. Since numeric complex factors attributes to the lane change intention model, this 

paper focuses more on the nonlinear separation SVM and its kernel function construction and 

soft separation maximization mechanism.  

When dealing with non-linear classification problem, it usually maps the training set into a 

high dimensional space that can be separated. Suppose that the feature vectors after mapping 

is φ(x), and the raw training set is x. Thus, the hyper-plane can be demonstrated as: 

                                            f(x) = ω ∙ φ(x) + b                                                       (4) 

Importing the slack vector 𝜉𝑖 to soften the separation rules, it meets the following optimized 

requirements: 

                                                max
𝜔，𝑏, 𝜉𝑖

1

2
‖𝜔‖2 + 𝑐 ∑ 𝜉𝑖

𝑁
𝑖=1                                

                                      s. t. 𝑦𝑖(𝜔 ∙ 𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖                                                    

                                                    𝜉𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑁                                                        (5) 
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Figure 3.5 The optimal hyperplane 

Where, C > 0 is a punishment parameter, which can be used to adjust the slacking degree. A 

bigger C means the more serious punishments on classification.  

In order to simplify the solving process, the convex quadratic can be transferred into a dual 

problem by Lagrangian multiplier, which can be expressed as: 

max
𝛼

∑ 𝛼𝐼 −
1

2

𝑁
𝑖=1 ∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝜑(𝑥𝑖) ∙ 𝜑(𝑥𝑗))𝑁

𝑗=1
𝑁
𝑖=1                        

                             s. t. ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, 2, …,                                 (6) 

It is difficult to solve this dual equation directly because of inner product. Hence, based on 

functional theory, a kernel function that meets the Mercer theorem is induced to calculate the 

corresponding point product at high dimensional space. This kernel function can be 

expressed as:  

                            k(𝑥𝑖 , 𝑥𝑗) = 〈𝜑(𝑥𝑖), 𝜑(𝑥𝑗)〉 =  𝜑(𝑥𝑖) ∙ 𝜑(𝑥𝑗)                                 (7) 

Thus, the equation 2.4 can be rewritten as: 

         max
𝛼

∑ 𝛼𝐼 −
1

2

𝑁

𝑖=1

∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

                       s. t. ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, 2, … , 𝑁                                   (8) 

After solving, it is:  

                      f(x) = ω ∙ φ(x) + b = ∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖, 𝑥𝑗) + 𝑏𝑁
𝑖=1                                    (9) 

3.4.2 Flowchart of SVM  

The most critical problem of LC intention recognition is to figure out whether the vehicle is 

prepared to take an obvious lateral movement. The SVM model is used here to identify this 

problem. The flowchart of its training process is shown in Figure 3.6. Firstly, the feature 

vectors that can represent LC intention are selected. The feature dimensionality is conducted 

by the Principal Component Analysis (PCA). Then, the Grid Search Method (GSM) is used 

to find the optimal parameters for kernel function. The SVM classification model of is 

established using the Matlab LibSVM library. The Accuracy of the model is verified by the 
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accuracy value and the Accuracy Under Curve (AUC) value of Receiver Operating 

Characteristic (ROC) curve. 

 

Figure 3.6 The flowchart of SVM classification 

The LibSVM is a kind of open-source package of Matlab, which could be easily applied and 

modified. The four main py. files of LibSVM are subset.py, easy.py, grid.py, and 

checkdata.py. Three execution files of Windows that are set here to support LibSVM running 

are svm-scale, svm-train, svm-predict.  

As recommended by Nagatani (1993) 0.2 m/s of lateral movement is preliminarily labeled as 

the beginning timestamp of LC intention. The training sample is extracted from the previous 

5s of to the following 5s of this timestamp. All trajectories are labeled into positive, negative, 

and 0.  Positive represents the vehicle that takes LC, negative represents the vehicle that 

takes car-following, and 0 represents others. 

90% of the data is randomly selected as training sets respectively, and the remaining 10% is 

used as test data to verify the model identification. After the data filtering, a total number of 

4,730 waypoints are extracted, including 1,130 for LC and 3,600 for car-following. The 

proportion of positive and negative samples in the sample is about 1:3, so the distribution 

proportion of the original data set is reasonable. 

3.4.3 Training Details of SVM  

3.4.3.1. Feature Engineering 

When identifying whether the driver has LC intention, attention should be paid not only 

to the driving state of the vehicle itself and the difference among the surrounding 

vehicles, but also to the difference between the driving state of the vehicle in front of and 

behind the target lane. This study measures driver maneuver by the numeric method, 
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considering velocity, acceleration, steering angle, relative velocity, and relative gap 

distance. More specific labels used for SVM training are shown at Table 3-3. 

Table 3-3 Selection of feature vectors 

Feature ID Feature Units Description 

1 𝑣𝑥 m/s longitudinal speed of current vehicle 

2 𝑣𝑦 m/s lateral speed of current vehicle 

3 𝑎𝑥 m/s2 longitudinal acceleration of current vehicle 

4 𝑎𝑦 m/s2 lateral acceleration of current vehicle 

5 θ deg steering wheel angle of current vehicle 

6 Δ𝑣1 m/s speed differences between the front vehicle and the current vehicle 

7 Δ𝑣2 m/s speed differences between the target vehicle and the current vehicle 

8 Δ𝑣3 m/s speed differences between the rear vehicle and the current vehicle 

9 Δ𝑑1 m distance between the front vehicle and the current vehicle 

10 Δ𝑑2 m distance between the target vehicle and the current vehicle 

11 Δ𝑑3 m distance between the rear vehicle and the current vehicle 

Redundant information that comes from various vectors could mislead the machine 

learning to obtain very fuzzy mapping results as well as low efficiency. To solve this 

problem, some measurements would be taken to optimize the features to readjust the 

vector space. In this report, the PCA method is used to reduce the vector’s dimensions by 

deleting the interference among them. The steps of PCA are: 

Step1: Calculating the covariance matrix and acquiring its feature vectors. 

Step2: Ranking all feature vectors in descending order. 

Step3: Acquiring the feature vectors and unifying them, then mapping the principal 

vectors by multiplying the transferred feature vectors matrix and data matrix. 

Step4: Repeating step 3 until all data are mapped with the principal component. 

After the PCA process, a feature more than 1 is selected as the principal component. The 

contribution degree of each feature is shown in Table 3-4. Since the cumulative 

contribution rate of the top 5 components is more than 87.808%, they are shown in Table 

3-5 to input SVM for training. 

Table 3-4 Component accumulation contribution rate of PCA 

Feature ID Feature Contribution rate Accumulative contribution rate 

1 2.322 27.112 27.112 

2 1.847 21.787 48.899 

3 1.221 15.097 63.996 

4 1.068 12.71 76.706 

5 1.001 11.102 87.808 

6 0.867 4.88 92.688 

7 0.757 2.883 95.571 

8 0.693 2.301 97.872 

9 0.597 1.124 98.996 

10 0.342 0.608 99.604 

11 0.286 0.396 100 
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Table 3-5 Component score coefficient matrix of PCA 

Feature 

Vector 

Principle component 

1 2 3 4 5 

𝑣𝑥 0.284 -0.103 0.254 -0.039 0.057 

𝑣𝑦 0.029 -0.084 0.269 0.49 0.689 

𝑎𝑥 0.072 0.485 0.009 -0.001 -0.001 

𝑎𝑦 -0.005 -0.284 -0.037 -0.251 0.05 

θ 0.07 0.446 0.067 0.029 0.069 

Δ𝑣1 0.204 -0.043 -0.276 0.457 0.017 

Δ𝑣2 0.31 -0.001 -0.396 -0.154 0.096 

Δ𝑣3 -0.335 0.045 0.188 -0.034 -0.034 

Δ𝑑1 0.142 0.003 0.563 -0.11 -0.013 

Δ𝑑2 0.253 -0.028 0.253 -0.339 -0.126 

Δ𝑑3 0.074 -0.068 0.164 0.52 -0.698 

3.4.3.2. Parameters Optimization  

Among the Linear kernel, Polynomial kernel, Sigmoid kernel, and Radial Basis Function 

(RBF) of SVM, the last one is used in this paper because of its fewer hyperparameters 

and small sample dimensions. 𝑐 and γ are the two dominant parameters for RBF. To 

ensure the drivers’ intention classification accuracy, the GSM is used to search for the 

most optimized set by comparing all possible combinations.  

Parameters for the superior high diagram are shown in Figure 3.7, and the log2 𝑐 and 

log2 𝑔  are the corresponding parameters 𝑐 and γ to 2 at the bottom of the numerical 

value. Each parameter optimization steps by 0.5. According to the Matlab output 

optimization results and the comparison of the figure below, when the horizontal and 

vertical coordinate values are 3.5 and 4 respectively, the highest cross-validation 

accuracy is 95.2891%, when 𝑐 = 11.3137 , 𝛾 = 16. 

 

Figure 3.7 Contour plot of parameter optimization 
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3.5 Summary 

The field detecting data from NGSIM of the I-80 highway in Los Angeles, California is used to 

capture the vehicles’ trajectory features. A comprehensive introduction of NGSIM I-80 data has 

been presented in the preceding section. After the extraction of LC trajectory data, a total of 

4,730 data samples are extracted, including 1,130 samples for lane changing and 3,600 for lane 

keeping. The SVM classification algorithm is used to identify the driving behavior of car-

following and LC. The perfect value of 95.2891% cross-validation accuracy when 𝑐 = 11.3137 , 
𝛾 = 16 from the GSM optimization algorithm demonstrates accurate classification performance. 

When it is used to test the model, 84.99% of classification evaluation accuracy is concluded. 

Besides, the 0.8924 of AUC that comes from the ROC curve shows a better performance of this 

model.  

  



65 

 

Chapter 4.  LC Decision Making and Trajectory Planning 

4.1 Introduction 

This chapter describes the critical problems of LC decision-making and trajectory planning by 

applying the Markov Decision Process (MDP). Definitions of discrete state and action spaces of 

LC agent vehicles are made here. Based on that, reward functions are also defined in detail. To 

coordinate with the simulation via Model Predictive Control (MPC) framework, some 

redefinitions based on kinematic models are used to transmit vehicle trajectories from the 

previous machine learning output. Specifically, some considerations with smoothing discrete 

decisions in the time series are also illustrated in this chapter. 

4.2 Problem Statement 

4.2.1 Decision Making of AV’s LC  

Safety is the most important consideration when design a AVs’ LC control system. 

Considering that, the AVs’ state at each time space is defined as three levels: safety, attentive, 

and dangerous. The target risk state of AVs’ illegal LC maneuver, human-like central driving 

habitats, and road boundaries constrain are calculated. Through comparing the risk reward 

function and the risk assessment value at each time interval, the expected risk of each agent 

could be defined as the difference between maximum risk assessment value and the reward 

risk at the next time point.  

Since the Risk Assessment (RA) is focused, AV’s safety state could be scored as {𝑠𝑎𝑓𝑒𝑡𝑦 =
2, 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑣𝑒 = 1, 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 = 0} based on expert knowledges. That means the reward 

from environment could be 2 when it is identified as a safety action that plays an excellent 

safety control for vehicles driving. Attentive scores as 1, because it is less expected than the 

safety state, but much better than the dangerous state.  

4.2.2 Trajectory Planning of AV’s LC  

Although the previous deep RL based (most are model-free) models gain a great 

improvement on LC safety control, they are hard to apply for other scenarios. Considering 

that, a strong robust LC safety control model of AV should be taken more efforts. Helped by 

the advanced research on RL, the model-based studies on trajectory planning are becoming 

more and more popular. As one of typical models, Inverse RL based on Behavior Cloning 

(BC) is used in this project to infer humans driving behaviors.  

From the perspective of personal stylized LC automated safety control, the main problems of 

these trajectory planning problems are to find an optimized reward function that could best 

explain the human driving behavior from NGSIM I-80. The other most critical issue is to find 

the optimal path and control trajectory which could maximize the reward for the platooning 

vehicles.  
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4.3 Reward Function for Decision Making  

4.3.1 Primary Definition  

The risk assessment function is the sum of three items illegal punishment, human driving 

habits revision, and road boundary limitation. Specifically, the illegal punishment is 

considered for the exit traffic rules. This is a soft penalty for the AVs that make an illegal 

lane change. Nearly all human drivers would like to drive in the center of the lane. Hence, the 

second item is about human driving habits that ensure all AVs driving in the center of the 

lane. And the last item is driving in the road boundaries and surviving in the environment if 

possible.     

𝑟 ≝ 𝑟𝑖𝑛𝑣𝑎𝑠𝑟𝑖𝑜𝑛 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑟𝑒𝑥𝑖𝑠𝑡                                                (1) 

𝑟𝑖𝑛𝑣𝑎𝑠𝑖𝑜𝑛 ≝  −𝑒
−

(𝑙𝑎𝑙𝑑−𝑙𝑎ℎ𝑣)2

2𝜎2                                                 (2) 

𝑟𝑐𝑒𝑛𝑡𝑒𝑟 ≝  𝑒
−

(𝑙𝑎𝑐𝑒𝑛𝑡𝑒𝑟−𝑙𝑎ℎ𝑣)2

2𝜎2                                                 (3) 

𝑟𝑒𝑥𝑖𝑠𝑡 ≝  {
0.1, 𝑖𝑓 𝑒𝑥𝑖𝑠𝑡

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                  (4) 

Where, 𝑙𝑎𝑙𝑑 and 𝑙𝑎ℎ𝑣 denote the lane boundary and the lateral position of the HV, 

respectively. 𝑙𝑎𝑐𝑒𝑛𝑡𝑒𝑟 represents the current lane center. Exist means that collision and 

running out of boundaries do not occur. The values of 0.1 and -1 are commonly used. 

4.3.2 Redefinition 

Since the risk level defined in this study is a discrete set, it should be transformed into a 

continuous risk function. As referred from the reproduce project, a risk coefficient τ is 

induced by the posterior probability that is calculated by Bayes theory. The discrete transfer 

to continuous risk by the risk coefficient could be written as: 

휀 ≝ 𝔼(𝜏) = ∑ 𝜏 ∙ 𝑝(𝜏|𝑑) =  ∑ 𝜏 ∙ 𝑝(𝜏|𝑑)𝜏∈{2,1}𝜏∈Ω                                  (5) 

Where 𝜏 is the discrete risk level {2,1,0}, and 휀 denotes the expectation of the assessed risk. 

4.4 Reward Function for Trajectory Planning 

The deep inverse RL based on the Costmap inference is used in this research to help automated 

safety LC control via MPC. In the beginning, the Costmap data that comes from the NGSIM I-80 

data is extracted at each timestamp for deep learning. While the Maximum Entropy Deep Inverse 

Reinforcement Learning (MEDIRL) is developed and used to find optimal solutions during each 

control time interval and next generations’ updating.  

The motivation of learning a spatiotemporal Costmap is that the Costmap obtained from the 

original MEDIRL cannot be used by itself in MPC. Without temporal information, there are an 

infinite number of ways to follow the low-cost region in the position Costmap, many of which 

may cause a collision. 

The definition of Costmap is a 2-D bird eye view, which is the occupancy grid of each feature. 

To describe the LC trajectory smoothly, the vehicle occupancy, velocity occupancy, acceleration 
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occupancy, heading angle occupancy, offset from the closet lane occupancy are used, which 

could be shown in Figure 4.1. 

 

Figure 4.1 The observations that are normalized and converted into the bird’s eye view ego-centric 2d images. 

the brighter color represents higher values as shown in the color bar. 

4.5 Summary 

The decision-making and trajectory planning of AVs’ LC is assumed to follow the MDP in this 

chapter. Because of the complicated dynamic procedure of LC, the problem statement of the RL-

based models is abstracted reasonably in this chapter under MDP assumptions. It is noticed that 

some redefinitions based on kinematic models are used to transmit vehicle trajectories from the 

previous machine learning output because of the MPC control framework that is used to simulate 

this process.  
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Chapter 5.  Optimization Methodology 

5.1 Introduction 

This chapter will discuss how to find the optimal policy to describe the ground truth under the 

assumption of behavior cloning. The mechanism of two typical reinforcement learning models, 

Prioritized Replay Deep Q-Network (PRDQN) and MEDIRL, are illustrated. Considering that, 

the general optimization framework is formulated. The objective function will be defined to 

minimize the risk level or collision of LC agents and best mimic the human driving data as 

described in Chapter 3. 

5.2 Definition of Reinforcement Learning 

RL is used to maximize the numerical reward for the action of the decision agent by learning 

from strategies produced by the interaction between the agent and environment. As for the most 

interesting and challenging cases, the agents’ actions not only reflect the immediate reward but 

also the subsequent reward for the following steps. The mechanism of RL is described as a 

Markov Decision Process (MDP) in the most common situation. The PRDQN is based on the 

basic principle of reinforcement learning MDP process, which can be written as: 

ℳ ⇒ ┴𝑑𝑒𝑓 < ℒ, Å, ℘, ℛ >  (1) 

Where ℒ ℒ denotes a finite set of states, Å is a finite set of actions, ℘ represents the state 

transition probability, and ℛ ℛ denotes the reward space.  

Typically, as for a specific environment state, a stochastic policy is generated which is the 

probability of action that is taken. During these interactions, the set of these state-action mapping 

samples could be obtained. Among them, a best policy function exists and can be written as 

follows to maximize the expected cumulative reward: 

   𝜋∗(𝑠) = 𝛦𝜋{∑ 𝛶𝑖𝑟𝑡+𝑖
+∞
𝑖=0 |𝑠𝑖 = 𝑠}𝜋

𝑎𝑟𝑔𝑚𝑎𝑥
                                                    (2) 

Where 𝛶 ∈ [0,1] denotes the discount factor, which controls the weight of the future reward, 

𝜋∗(𝑠) represents the best policy, and 𝑟𝑡+𝑖 is the reward of time 𝑡 + 𝑖, which can be calculated by 

the pre-defined reward function. 

5.3 Definition of PRDQN  

The RL optimization control solved by the PRDQN algorithm which is based on MDP has been 

proved to be converged when its reward function is a bounded one. Figure 5.1 shows the basic 

architecture of this study. 
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Figure 5.1 Structure of RA-PRDQN 

 

5.3.1 Principle of PRDQN 

As for DQN, the Q value function is induced to solve the above-mentioned question. As for 

each best policy function, the corresponding Q-value function could be written as:    

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋{∑ 𝛾𝑖𝑟𝑡+𝑖|𝑠𝑖 = 𝑠, 𝑎𝑡 = 𝑎+∞
𝑖=0 }                                      (3) 

Where 𝑞𝜋(𝑠, 𝑎) denotes the expected cumulative reward starting from state s following 

policy 𝜋 and action a.  

 

Figure 5.2 Typical architecture of PRDQN 

The structure of a typical PRDQN model is shown in Figure 5.2. From this, the most 

significant difference of PRDQN and other DQN models is the operation for TD error. The 

samples with small TD errors are easy to be learned, but it is not the case for the samples 

with higher TD errors. The prioritized replay is inducted to improve the probability of higher 

TD errors for learning process, which is defined as: 

𝑝(𝑖) ≝
𝑝𝑖

𝑎

∑ 𝑝𝑘
𝑎

𝑘
                                                                (4) 

Where 𝑝(𝑖) is the sampled probability of sample 𝑖, 𝑝 denotes the TD error, and a is a pre-

defined coefficient.  
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In order to guarantee the priority of higher TD error samples, the weighted samples are used 

to adjust the gradients when updating the network for bias elimination. It could be written as: 

𝑤𝑖 ≝ (
1

𝑁
∙

1

𝑃(𝑖)
)𝛽                                                           (5) 

Where N is the replay size, and 𝛽 is a pre-defined coefficient. 

As for the expected risk function has transferred from the discrete one to the continuous one, 

the corresponding Q-value function could be written as: 

𝑄𝜋(𝑠, 𝑎) = 𝛦𝜋{∑ 𝛶𝑖(𝑚𝑎𝑥휀 −  휀𝑡+𝑖)
+∞
𝑖=0 |𝑠𝑖 = 𝑠,  𝑎𝑡 = 𝑎}                              (6) 

Where 𝑚𝑎𝑥휀 = 2.  

Therefore, the purpose of PRDQN is to search for an optimized strategy by Q function to 

minimize the overall expected risks of AVs. 

Compared with Q-learning, there are two main improvements of DQN. First, the value 

function is estimated by the deep Convolutional Neural Network (CNN). Second, the 

learning process is trained by experience replay as well. 

5.3.2 Training Details of PRDQN 

The most important part of training process is to ensure the PRDQN algorithm to find an 

optimal policy with the minimum expected risk. This study still uses five layers with variable 

hidden units in each to train the deep learning structure, and the activation function is 

determined by ReLu and Linear for the output. The details of the network are shown in Table 

5.1. 

Table 5-1 Details of the Q-value network 

Layers Hidden Units Activation Function 

1 30 ReLu 

2 112 ReLu 

3 304 ReLu 

4 120 ReLu 

5 34 ReLu 

Output 5 Linear 

Specifically, there are a lot of training tips for achieving a significant training result. The 

fully connected layer is utilized to approximate the Q-value function. In addition, Batch 

Normalization (BN) is utilized to normalize the neural output before activation. 

Warmup learning rate strategy is used to reduce the variance when updating the network, in 

which the initial learning rate is 0.01 and recovers to 0.1 after 50 episodes.  

Gradient clipping is used to clip the gradient by normalization. The purpose of this is to 

avoid gradient explosion for a complicated huge network. For any gradient in layer, the 

gradient after clipping could be defined as: 

𝑔𝑟𝑎𝑑𝑖
∗ ≝ 𝑔𝑟𝑎𝑑𝑖 ∗

𝑐𝑙𝑖𝑝𝑛𝑜𝑟𝑚

𝑚𝑎𝑥(𝑛𝑜𝑟𝑚(𝑔𝑟𝑎𝑑𝑖),𝑐𝑙𝑖𝑝𝑛𝑜𝑟𝑚)
                                       (6) 
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Where 𝑔𝑟𝑎𝑑𝑖 and 𝑔𝑟𝑎𝑑𝑖
∗ denote the raw gradient and the gradient after clipping in layer I 

respectively; 𝑛𝑜𝑟𝑚 denotes the standard deviation calculation; and 𝑐𝑙𝑖𝑝𝑛𝑜𝑟𝑚 is a pre-

defined coefficient which denotes the standard deviation after clipping. To reduce the 

updating variance, 𝑐𝑙𝑖𝑝𝑛𝑜𝑟𝑚 is set as 0.1. 

Soft network updating: Rather than using the hard network updating, soft updating is used to 

copy the weights from the online network to the target network, which can be written as: 

𝜃𝑡𝑎𝑟𝑔𝑒𝑡 ≝ (1 − 𝜂) ∙ 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜂 ∙ 𝜃𝑜𝑛𝑙𝑖𝑛𝑒                                           (7) 

Where 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 and 𝜃𝑜𝑛𝑙𝑖𝑛𝑒 denote the weights in the target network and the online network 

respectively, and 𝜂 is a small value that affects the speed of the target network updating and 

it is set as 0. 

5.4 Inverse RL  

5.4.1 Maximum Entropy Inverse RL 

Given the expert’s demonstrations, if the expert’s behavior is suboptimal (imperfect or 

noisy), it is hard to represent the behavior with a single reward function. The Maximum 

Entropy Inverse RL approach is introduced to solve this ambiguity problem. 

Maximizing the entropy of distributions over paths while satisfying the feature expectation 

matching constraints is equivalent to maximizing the likelihood of the observed data D under 

the assumed maximum entropy distribution: 

𝜃∗ = ∑ 𝑙𝑜𝑔𝑃(𝜍|𝜃, 𝑃𝑠𝑎)𝜍𝜖𝐷𝜃

𝑎𝑟𝑔𝑚𝑎𝑥
                                              (8) 

Where 𝑃(𝜍|𝜃, 𝑃𝑠𝑎) follows the maximum entropy (Boltzmann) distribution. This convex 

problem is solved by gradient-based optimization methods with 

𝜕𝐿(𝜃)

𝜕𝜃
= ∑ 𝜇𝑠𝑓(𝑠) − ∑ 𝜇𝑠𝑖

𝑓(𝑠𝑖)𝑠𝑖𝑠𝜖𝜍𝜖𝐷                                             (9) 

Where 𝜇𝑠 is defined as the State Visitation Frequency (SVF), the discounted sum of 

probabilities of visiting a state 𝑠: 𝜇𝑠 =  ∑ 𝛾𝑡𝑃(𝑠𝑡 = 𝑠|𝜋, 𝜃, 𝑃𝑠𝑎)∞
𝑡=0 . With a given or selected 

𝑓, this updated rule ends up as finding 𝜃 in reward in which an optimal policy matches the 

SVF of the demonstration 𝐷. 

5.4.2 MEDIRL 

Previous approaches to estimate a reward function used a weighted linear reward function 

with hand-selected features. To overcome the limits of linear expression, a new method 

towards to Neural Network regression has been proposed to extend it to the nonlinear 

problem 𝑅𝜃(𝑠) = 𝑅(𝑓(𝑠), 𝜃). By training a NN with a raw observation obtained from 

sensors as an input, it does not require hand-designing state features. 

In MEDIRL, the network is trained to maximize the joint probability of the demonstration 

data 𝐷 and model parameters 𝜃 under the estimated reward 𝑅𝜃(𝑠): 

𝐿(𝜃) = 𝑙𝑜𝑔𝑃(𝐷, 𝜃|𝑅𝜃(𝑠)) = 𝑙𝑜𝑔𝑃(𝐷|𝑅𝜃(𝑠)) + 𝑙𝑜𝑔𝑃(𝜃) = 𝐿𝐷 + 𝐿𝜃                  (10) 

Since 𝐿𝜃 can be optimized with weight regularization techniques for training Neural 

Networks, MEDIRL focuses on maximizing the first term 𝐿𝐷: 
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𝜕𝐿(𝜃)

𝜕𝜃
=

𝜕𝐿𝐷

𝜕𝑅𝜃

𝜕𝑅𝜃

𝜕𝜃
= (𝜇𝐷 − Ε[𝜇])

𝜕𝑅𝜃(𝑠)

𝜕𝜃
                                              (11) 

Where Ε[𝜇] is the expected SVF from the predicted reward. In the MEDIRL update, the 

derivative of the reward with respect to the weight parameter can be easily computed by 

back-propagation. 

5.5 Summary 

This chapter presents the optimization used in this research. Two critical problems are solved 

based on the RL algorithm. One is to find the optimal reward function by the Q value of PRDQN 

to minimize the driving risk during LC. The other is to find the optimal policy which could 

demonstrate humans’ driving characteristics and the optimal value of MEDIRL that could ensure 

the maximum safety reward during LC. It is noticed that only locally optimal solutions can be 

obtained due to constrained generations. With more generations, the solution can be further 

improved to approach closer to the global optimal. 
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Chapter 6.  Simulation and Validation 

6.1 Introduction 

This chapter describes the basic settings of the automated LCs control process in CARLA. As 

one of the most popular open-source traffic simulation software, CARLA provides various 

digital maps, vehicle simulation controllers, and multiple APIs that could be conveniently 

connected to other toolboxes. Additionally, some typical simulation scenarios of dense traffic set 

in CARLA are illustrated in this chapter.  

6.2 Simulation Platform 

6.2.1 CARLA 

The development of artificial intelligence, 5G, and V2X produces a high possibility of AV 

application in the market. The implementation of AV should be based on a huge amount of 

training data. The validation of different driving scenarios plays an important role as well. 

However, it is unrealistic to test with real vehicles for a large amount of training data and 

environmental verification, because it involves huge safety costs and implementation cycle 

length. Most important, many scenes cannot be reproduced in the real environment, such as 

the vehicle in front suddenly losing control. CARLA can meet researchers’ high expectation 

on a mimic simulation for AVs’ control and evaluation.  

 

CARLA is an open-source project jointly developed by Intel LABS and the Computer Vision 

Center in Barcelona. The framework of Carla is a server/client architecture. The server is the 

simulation environment itself. All the things that are present in the real driving environment 

of a car are embodied in it, including: cars, people, roads and Bridges, traffic lights, signs, 

weather, buildings, etc. Based on these components, CARLA could simulate a real world for 

AVs’ algorithms training based on Python libraries.  

 

The development and update of CARLA rely on a strong research team behind it. Hence,  

CARLA provides multi-versions to suit different machine learning frameworks on various 

operating systems. The front end of CARLA is presented by Unreal Engine for 3D rendering. 

Two versions (Linux and Windows) are available right now for clients based on powerful 

GPU.  

 

The purpose of this research is to test the performance of the proposed LC control model and 

trajectory planning model of AVs’ platoon. The Linux version is applied because of its 

higher reliability on calculation than the Windows version. In general, the proposed models 

are coded by Python that interact with CARLA by API. The LC decision is based on the 

reward learning from the interaction of AVs’ actions and the safety of the platoon. The 

trajectory is periodically transmitted to the CARLA Server. Every time the play button is 

clicked; the simulation could be conducted. 

 

However, the definition of Python API is not easy to make. Fortunately, the Server side has A 

Wheeled Vehicle AI Controller and autopilot model. The mechanism of the Set Fixed Route 

() function shows a perfect example of how to control AVs’ step-by-step operations by some 
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inner customized modules. Based on that, the revised Python API for the proposed models in 

this research can be coded. Finally, it needs to connect the defined API with the server and 

client. 

6.2.2 CARLA Setting  

Initially, it is assumed that the LC maneuvers of automated vehicles are controlled by 

following the MDP. One significant benefit of this assumption is that the PRDQN could be 

utilized to explore the nearly optimized decision at each time step as soon as possible. 

However, some calculation problems would occur if there are some unreasonable definitions 

of this system.  The kinematic information is usually utilized like the end-to-end control 

problem. Since PRDQN model was used in this study to train the data, the numerical 

information could be easily obtained. And the parameters could be easily set in CARLA as 

well. The numerical information is used below: 

     𝑉𝐴𝑂𝑖 = [𝕚𝑖, 𝑙𝑂𝑖, 𝑙𝑎𝑖, 𝑦𝑎𝑤, Δ𝑙𝑂𝑖, Δ𝑙𝑎𝑖, Δ𝑦𝑎𝑤]                                          (1) 

𝑠 = [𝑉𝐴𝑂1, 𝑉𝐴𝑂2,. . . 𝑉𝐴𝑂𝑛 ]                                                     (2) 

𝕚𝑖  𝜖 [0,1], 0 ≤ 𝑖 ≤ 𝑛                                                          (3)                             

Where 𝕚𝑖 denotes whether there is another vehicle in lane i within the perception range, n is 

the number of lanes, Δ𝑙𝑂𝑖 and Δ𝑙𝑎𝑖 are the corresponding change rate, and 𝑦𝑎𝑤 and Δ𝑦𝑎𝑤 

denote the vehicle yaw angle and yaw rate. 

The corresponding actions of each AV could be described by the following set: 

𝑎𝑡 ≝ [𝐿𝑇𝐿𝑡 , 𝐿𝑇𝑆𝑡, 𝑆𝑡, 𝑅𝑇𝑆𝑡, 𝑅𝑇𝐿𝑡 ]                                             (4) 

Where LTL and RLT denote left-turn and right-turn with a large numerical value 

respectively, LTS and RTS denote left-turn and right-turn with a small numerical value 

respectively, and S denotes straight driving action without steering. 

6.2.3 Parameters Setting 

In this project, the proposed LC decision-making and trajectory planning model are tested in 

a mixed traffic flow, which is combined by the Human-driven Vehicles (HV) and AVs. The 

lateral movements of AVs are controlled by RL model. The longitudinal movements of AVs 

are controlled by Intelligent Driver Model (IDM). The Human-driven Vehicle (HV) 

dynamics used in this research are shown in Table 6-1.  

Table 6-1 Brief information on the HV dynamics 

Parameter Description  Value 

Max rpm The maximum RPM of the vehicle engine 5000.0 

Moi The moment of inertia of the vehicle’s engine 1.0 

Clutch strength The clutch strength of the vehicle in Kgm2/s 10.0 

Final ratio The fixed ratio from transmission to wheels 4.0 

Mass The mass of the vehicle in Kg 1000.0 

Drag coefficient Drag coefficient of the vehicle’s chassis 0.3 

Steering curve Curve that indicates the maximum steering for a specific - 
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forward speed 

Tire friction A scalar value that indicates the friction of the wheel 2.0 

Damping rate Damping rate of the wheel 0.25 

Max brake torque Maximum brake torque in Nm 1500.0 

Max handbrake 

torque 
Maximum handbrake torque in Nm 3000.0 

 

6.3 Scenarios  

6.3.1 Dense Traffic Scenario 

LC in dense traffic has been a challenging application in autonomous driving, especially in 

scenarios with complex inter-vehicle interactions. It is a common safety-efficiency dilemma. 

Some planners have larger buffer space to handle uncertainties from surrounding vehicles 

and the environment, thus can be overly conservative and inefficient. While other planners 

put more emphasis on efficiency and task success rate, safety is compromised. It is more 

challenging during the transition period to a fully automated transportation system because 

HVs and AVs need to interact with each other and share the transportation network. So, 

without an accurate estimate of the other vehicle’s intention, the LC process can be neither 

inefficient nor unsafe.  

Due to the high LC frequency, the simulation scenarios are challenging. For one reason, the 

agent vehicles would take dense actions for the static objectives and the relatively high speed 

for the moving objectives. For the other reason, it is essential to define the action space and 

state space of each agent vehicle in this research based on RL. The computation efficiency 

and time efficiency would be very low if there are too many action and state values that are 

used to explore the optimal reward function. Since the MEDIRL mentioned in chapter 4 

would be applied to plan LC agents’ trajectory, it would explore more than one optimal 

reward function at each time step. When the output of MEDIRL is used for MPC control as 

the input, there would have more than one actions to control the agent. It is easy to make the 

agent vehicle fall into a local optimum.   

6.3.2 Simulation of Decision Making 

In order to evaluate the effectiveness of the proposed RA-PRDQN model in this study, the 

scenarios that consider the fixed obstacles and moving obstacles should be considered 

comprehensively. Constrained by the strong assumptions of this model, this study intends to 

lay the longest straight road section by the CARLA default town map. Thus, the randomly 

static and dynamic vehicles are placed on a 420m long straight road. As shown in Figure 6.1, 

a typical description of LC phenomenon is based on this proposed model. 
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Figure 6.1 Layout of LC trajectories on CARLA  

6.3.2.1. Static Vehicles 

As shown in Figure 6.1, the red vehicles are randomly placed on the above-mentioned 

straight road and the quantity of these static vehicles ranges from 10 to 26. Since the 

420m straight main freeway is relatively short, 100 times during the simulation process 

are executed to gain a better simulation result. The purpose of that is also used to ensure 

about 4 times per 100m (high lane change frequency for on-road driving). The location of 

the static vehicle in each interval section is randomly specified using the Gaussian-based 

position sampling method, and the LC of the initial locations is randomly set. Therefore, 

the situation with two vehicles parallelly located in two lanes to block the road would not 

happen in our experiments. 

6.3.2.2. Moving Vehicles 

Since the vehicles in the scenario1 are fixed, it is easy to set these static ones. However, 

the moving obstacle of human driving vehicles is slightly different from the fixed one. In 

this study, the human-driving vehicles are dynamically set as shown in Table 4-1. And 

the HVs are set in the autopilot mode provided by CARLA (speed limit 30 m/s). 

6.3.3 Simulation of Trajectory Planning  

In this section, the experiments with the CARLA simulator with ROS is applied to test the 

trajectory planning model based on the MEDIRL. The scenario in this section is similar to 

the simulated decision-making. A dense traffic highway scenario with 20 vehicles driving 

around the ego vehicles is designed as well.  Other vehicles perform lane keeping and 

collision avoidance and each vehicle tries to reach their target speed, which is randomly 

generated by 5 + 𝑈[−2,2] in m/s, where 𝑈  is uniform sampling.   

The behavior model of the other vehicles follows the IDM, one of the well-known rule-based 

models for car following. The model is also based on the bicycle kinematics. The principle of 

this kinematic model is:  

𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘 cos(𝜓𝑘 + 𝛽𝑘)Δ𝑡                                                    (1) 

𝜓𝑘+1 = 𝜓𝑘 +
𝑣𝑘

𝑙𝑟
sin(𝛽𝑘)Δ𝑡                                                     (2) 

𝑦𝑘+1 = 𝑦𝑘 + 𝑣𝑘 sin(𝜓𝑘 + 𝛽𝑘)Δ𝑡                                                    (3) 

     𝑣𝑘+1 = 𝑣𝑘 + 𝑣𝑘 cos Δ𝑡                                                      (4) 
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𝛽𝑘 = tan−1(
𝑙𝑟

𝑙𝑓+𝑙𝑟
tan(𝛿𝑘))                                                    (5) 

Where  𝑎   and  𝛿 are the control inputs: acceleration and the front wheel steering angle. 𝛽 is 

the angle of the current velocity of the center of mass with respect to the longitudinal axis of 

the vehicle,  (𝑥, 𝑦) are the position, the coordinates of the center of mass in an inertial frame  

(𝑋, 𝑌) ,  𝜓 is the inertial heading angle, and 𝑣 is the vehicle speed.  𝑙𝑟 and 𝑙𝑓 are the distance 

from the center of mass to the front and rear of the vehicle, respectively. The state is defined 

as [𝑥, 𝑦, 𝜓, 𝑣, 𝛽]. 

The other vehicle’s behavior is designed to be always cooperative, where they slow down if 

the AVs crosses a line in front of them and cuts into their lane. It is performed 50 

experiments per algorithm at each trial, and the environment is randomized by starting with a 

different initial velocity of the AV and relative initial positions and target velocities of other 

vehicles.  

To reduce the gap between the real vehicle’s model in CARLA and the kinematic bicycle 

model adopted in MPC, this study publishes the MPC-predicted state trajectories as 

waypoints [𝑥, 𝑦, 𝑣]. Then a low-level PID controller executes the vehicle’s control commands 

(throttle and steering angle) to follow the MPC-generated waypoints. 

6.4 Summary 

The new technology CARLA applied in this research to simulate decision-making and trajectory 

planning models that have been illustrated in the aforementioned chapters. CARLA is a friendly 

used simulation tool for CAVs because of its opening modification modules. Helped by the 

previous studies of vehicle dynamics’ validation, the basic setting of vehicles, platooning, and 

simulation environments are illustrated in this chapter. The classic IDM model is applied to 

control longitudinal maneuver and the lateral movement controlled by the proposed model. 

Besides, the settings of dense traffic scenarios are demonstrated here for further robust analyses.  
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Chapter 7.  Numerical Results and Discussion 

7.1 Introduction 

This chapter will present a summary of the simulation results. The results of the four simulation 

scenarios are discussed in detail.  

Since the AV’s LC model is abstracted into MDP, the optimization solver PRDQN and Inverse 

RL are applied to solve decision making and trajectory planning as mentioned in Chapters 4 and 

5. Hence, the reward function will be estimated, considering maneuver safety and control 

efficiency. For that, the collision number, statistical analysis of gap distance, acceleration, and 

jerk angle of each scenario are estimated with different combinations of HVs and AVs, and the 

effects of the LC success rate of AVs could be quantified. 

7.2 Result of SVM  

7.2.1 Quantitative Results  

Finally, 473 groups of test samples are imported into the SVM model for intention 

recognition, according to the screening results. The classification results are shown in Figure 

7.1, where the x-axis is the total number of test samples, and the y-axis is the classification 

result (0-lane keeping, 1-lane changing). Of the test samples, 402 groups have completed the 

accurate identification of driving behavior, and the classification accuracy is 84.99%. 

 

Figure 7.1 Identification results of SVM 

By comparing the actual intention of the driver in the test set with the recognition result of 

the model, the recognition accuracy of LC and lane-keeping are 87.61% and 84.17%, 

respectively, as shown in Table 7-1. 
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Table 7-1 Lane changing and lane keeping identification accuracy 

Actual intention 
Identification intention Identification 

accuracy Lane changing Lane keeping 

Lane changing 99 14 87.61 

Lane keeping 57 303 84.17 

7.2.2 Discussion of Intention Identification   

In addition to the classification accuracy of the analysis model, the ROC will be used in this 

chapter to further verify the model performance. ROC has high reliability and accurate 

description, is not affected by noise data, and has been widely used in the field of machine 

learning. ROC reflects the relationship between Sensitivity and Specificity, and a curve is 

plotted using 1-Specificity as the abscissa and Sensitivity as the ordinate. The theory of ROC 

is shown as: 

sensitivity =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%                                              (1) 

                                                         specificity =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100%                                              (2) 

 

Where, 𝑇𝑃 (the true positive category) is the number of LC vehicles that is properly 

identified. 

𝐹𝑁 (the fake negative category) is the number of no LC vehicles that are identified as LC 

maneuver. 

𝑇𝑁 (the true negative category) is the number of LC vehicles that is identified as no LC 

maneuver.  

𝐹𝑃 (the fake positive category), is the number of no LC vehicles that is identified as LC 

maneuver. 

Therefore, the models demonstrate more accurate separating performance when the value of 

sensitivity is significantly greater than 1-specifity.  

The ROC result of LC intention identification after testing is shown in Figure 7.2. It is 

obvious that the position of ROC curve is closer to the top left corner. That demonstrates that 

the sensitivity of the proposed SVM model is much greater than 1-specifity, indicating an 

accurate classification.  

 
Figure 7.2 The ROC curve of model testing 
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To evaluate the models’ performance quantitatively, the ROC Area under Curve (AUC) is 

used to calculate the decision value of identification algorithm after self-learning. Usually, 

AUC is calculated by the probability of the positive one in front of the negative one when 

randomly selecting a positive sample and a negative sample from the test set.  

Figure 7.3 describes the relation between ROC and AUC. From that, it is clear that the value 

of AUC is always smaller than 1. The closer its value is to 1, the more accurate recognition 

and classification can be carried out. So, the index is adapted to evaluate the performance of 

SVM for lane changing intention identification. The results are shown in Table 7-2. 

 

Figure 7.3 Mechanism of ROC and AUC 

 

 Table 7-2 AUC model performance evaluation standard 

AUC Model performance evaluation 

0.9~1.0 A 

0.8~0.9 B 

0.7~0.8 C 

0.6~0.7 D 

0.5~0.6 E 

According to the testing result of ROC curve that is shown in Figure 7.2 and the 

corresponding AUC based on Table 7-2, the testing result is 0.8924 and the final rating result 

is B.  

Regarding the number of fake positive samples and fake negative samples, which influence 

the model accuracy most, the fake positive samples that misidentify the lane keeping to lane 

changing dominate the ratio. Drivers usually will cancel their land changing intention when 

some unexpected incidents occur suddenly. Therefore, an independent T test is used in this 

chapter to discuss the dominant feature to identify the two samples: misidentification of lane 

keeping to lane changing and misidentification of lane changing to lane keeping.  
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Table 7-3 T-test results of independent samples’ features 

Features Classification Mean Significance test (𝛂 = 𝟎. 𝟎𝟓) 

𝑣𝑥(m/s) 0-car following 10.71 
p = 0.073 > 0.05 Non-significant 

1-lane changing 10.48 

𝑣𝑦(m/s) 0-car following 0.07 
p = 0.000 < 0.05 Significant 1-lane changing 1.31 

𝑎𝑥(m/s2) 
0-car following 0.18 

p = 0.259 > 0.05 Non-significant 
1-lane changing 0.15 

𝑎𝑦(m/s2) 
0-car following 0.33 

p = 0.344 > 0.05 Non-significant 
1-lane changing 0.38 

θ(deg) 
0-car following 0.10 

p = 0.002 < 0.05 Significant 
1-lane changing 5.67 

Δ𝑣1(m/s) 
0-car following 0.28 

p = 0.749 > 0.05 Non-significant 
1-lane changing 0.19 

Δ𝑣2(m/s) 
0-car following 0.24 

p = 0.494 > 0.05 Non-significant 
1-lane changing 0.29 

Δ𝑣3(m/s) 
0-car following 0.27 

p = 0.177 > 0.05 Non-significant 
1-lane changing 0.35 

Δ𝑑1(m) 
0-car following 8.74 

p = 0.202 > 0.05 Non-significant 
1-lane changing 10.13 

Δ𝑑2(m) 
0-car following 10.97 

p = 0.246 > 0.05 Non-significant 
1-lane changing 7.70 

Δ𝑑3(m) 
0-car following 11.18 

p = 0.328 > 0.05 Non-significant 
1-lane changing 9.70 

From the T testing results shown in Table 7-3, the dominant two features are the current 

vehicles’ lateral speed (𝑣𝑦) and the turning angle of steering wheel  θ(deg). Comparing the 

average lateral speeds between them, the state of car-following is significantly larger than the 

lane changing. The data indicates that it is unreasonable to identify the lane changing 

intention merely through vehicles’ lateral speed at the current moment. Since the lane 

changing is a smooth and continuous lateral moving process, it is more scientific to analyze 

the lateral speed variance in a certain period not just an instantaneous one. 
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As for the turning angle of steering wheel, it is 0.01 deg for both the car-following and lane 

changing when it is straight driving. However, it turns to 5.67 deg when starting to LC, 

which means that the driver takes a lateral adjustment at some degrees.  

Therefore, to identify the lane changing intentions more accurately, a second judgment about 

the lateral average speed and turning angle of steering wheel needs to be done and analyzed. 

The project recommends more research and discussions related to the precise lane changing 

identification to be taken when more precise data are supported, which plays a significant 

role on safety driving of automobile study in the future. 

7.3 Numerical Results of Decision Making 

7.3.1 Quantitative Results 

After training the PRDQN model and RA-PRDQN model on CARLA, the quantitative 

results when using different methods in those two scenarios are shown in the following Table 

7-4, Figure 7.4, Table 7-5, and Figure 7.5. The baseline means a random action strategy, 

denoting the difficulty level of the experimental scenario. Score (𝝁) and Score (𝝈) denote the 

average score (travel distance) and the corresponding standard deviation in the examined 

scenarios, respectively. 𝑛𝐶𝑠 denotes the number of collisions with vehicles or road 

boundaries occurring in the experiments. ∆ denotes the relative change rate of proposed 

model than the random model.  

Table 7-4 The metrics when using different methods in scenario 1 

Method Score (𝝁) Δ（%） Score (𝝈) Δ（%） 𝑛𝐶𝑠 Δ（%） 

Baseline 30.7  - 10.4 - 98 - 

PRDQN 321.6 1047.6 up 139.2 133.8 up 55 56.1 down 

RA-PRDQN 399.7  124.3 up 35.6 25.6 down 8 14.5 down 

 
Figure 7. 4 Comparison Result Among Models in Scenario 1 

 

Table 7-5 The metrics when using different methods in scenario 2 

Method Score (𝝁) Δ（%） Score (𝝈) Δ（%） 𝑛𝐶𝑠 Δ（%） 

Baseline 33.1 - 15.6 - 100 - 

PRDQN 258.6 781.3 up 100.6 644.9 up 57 57.0 down 

RA-PRDQN 403.2 155.9 up 72.1 57.2 down  10 17.5 down 

0 100 200 300 400 500

Score (𝝁)

Score (𝝈)

nCs

RA-PRDQN PRDQN Baseline
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Figure 7.5 Comparison result among models in scenario 2 

The presented results show that the proposed methods can attain better scores than the 

original methods. Specifically, the average scores of PRDQN in scenario 1 and scenario 2 are 

321.6, 258.6, which are improved by 1047.6%, 781.3% compared with the randomly selected 

baseline. This indicates that the DRL based model could greatly improve LC success rate to 

make sure a stable travel distance of AVs. The obvious decrease in the number of collisions 

also proves this conclusion.  

When comparing the PRDQN and proposed RA-PRDQN model, the average score shows 

similar raising tendency. The score of RA-PRDQN is 403.2, which is improved by 155.9% 

over PRDQN. As for the collision, only 10 occurred during the simulation test, which is 

much less than the PRDQN model. This indicates that the LC models achieve more stable 

performance after introducing the RA reward function into the PRDQN model.   

In summary, the presented quantitative results show that the proposed RA-PRDQN model 

can achieve a superior performance in both the static obstacle scenario and the scenario with 

dynamically moving vehicles. It indicates that the risk awareness strategy could help the 

agent be aware of the dangerous actions that may lead the vehicle into collisions during 

simulation. Introducing the risk awareness in PRDQN will make the agent to be punished 

when any risk behavior is taken. Hence, the proposed RA reward function will be better in 

reflecting the potential risk in complex driving scenarios, and more adaptive to take 

reasonable actions to avoid near-collisions and reach a more stable performance. 

7.3.2 Result Discussion  

The simulation scenarios include a static vehicle scenario and a moving vehicle scenario. In 

fact, the static test scenario of automated LC model is much easier than the dynamic one, 

because of much more uncertainties of dynamic systems. However, due to the high lane 

change frequency, the static scenario is still challenging.  

Table 7-6 shows the comparisons of the simulated driving parameters between this research 

work and the previous studies. It could be concluded that the simulated driving task in this 

study is challenging even for a static one. In the static scenario, the agent needs to make 

about 16 lane changes in each evaluation episode. In the moving scenario, the agent should 

make about 6 lane changes with a relatively high speed (roughly between 10 ~ 20 m/s). 

Therefore, the examined lane change scenarios in the present study are more challenging as 

compared with the lane change scenarios in the previous studies. In the examined challenging 

scenarios, the success rate of the proposed RA-PRDQN is about 88 ~ 94% in the examined 

dense traffic flow scenario with high lane change frequency. Therefore, the success rate of 

the proposed RA-PRDQN should be within a reasonable and acceptable range. 

0 100 200 300 400 500

Score 
(𝝁)

Score 
(𝝈)

nCs

RA-PRDQN PRDQN Baseline
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Table 7-6 The metrics when using different methods in scenario 1 

Method 
Total experiment 

distance 

Total obstacle 

number 

Mean barrier 

spacing 

Wang et al., 2018 100 m  8 125 m 

Mirchevska et al., 2018 1255 m * 10 50 *10 25 m 

Ye et al., 2020 800 m - - 

Duan et al., 2020 800-1000 m 2 450 m 

Chen et al., 2020 420 m 2 200 m 

This research 420 m * 100 25 * 100 16 m 

7.3.3 Discussion of LC Failure  

Although the proposed RA-PRDQN has greatly improved the motion path stability and 

quantitative performance, there are still some failure cases. As shown in Table 7-4 and Table 

7-5, there are eight collisions in scenario 1 and ten collisions in scenario 2 when using the 

proposed RA-PRDQN model. Most of the failure cases are caused by the short longitudinal 

distance between the front vehicle in the current lane and the lag vehicle in the target lane. 

One of the causations of these failures is the imperfectness of the used sampling probability 

method for position initialization of the HV and Objective Vehicles.  

Although the used sampling probability method can ensure that the situation with two 

vehicles parallelly located in two lanes blocking the road would not happen, there would be 

the situation where two vehicles are on different lanes with very short longitudinal distance 

(i.e., gap) which is not enough for the HV to execute a lane change maneuver. Therefore, a 

collision would not be avoidable because the trained agent is targeted to arrive at the 

destination to complete the driving task. In our future work, the sampling probability method 

for position initialization will be improved to avoid this problem, based on which the 

performance of our proposed methods should be enhanced. 

Another important reason leading to these failures is that the actions considered in this study 

for collision avoidance only cover the steering behavior. However, braking behavior is also 

very important to control the distance to the front and lag vehicles for collision avoidance. 

The missing of speed adaptation by braking may greatly contribute to those failure cases. To 

implement more realistic behavioral actions for autonomous driving, our future work will 

enrich the action space by including the braking behavior for longitudinal control together 

with the steering behaviors for lateral control. 

The third possible causation of these failures may be that the driving style attribute in the 

designed RA-PRDQN is similar with the aggressive driving style performance. Given that 

driving style affects drivers’ lane change decisions, the future efforts should focus on 

solutions to addressing this problem by considering driving style preferences in the designed 

decision-making strategies. 
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7.4 Trajectory Planning Results 

7.4.1 Quantitative Results and Discussion 

To test the model’s performance, multiple baselines are compared here. They are BC (Res 

NET18), Prediction and Policy learning Under Uncertainty (PPUU), and (Neural Network) 

NN MPC. The performance of these models is described in Table 7-7.  

Table 7-7  The metrics when using different methods in scenario 1 

Model Time 

Suc

c.(

%) 

Coll

.(%) 

Tim

eou

t 

(%) 

Brake

Avg 

Thr. 

Aug 

Acc. 

Max 

Brak

e 

Jerk 

Avg 

Thr. 

Jerk 

Avg 

Ang.

Acc.

Avg 

Ang.A

cc.Ma

x 

Ang.Je

rk.Avg 

Ang.Je

rk.Ma

x 

BC(Res

Net18) 
14.45 44 56 0 -0.34 0.63 1.55 -0.59 0.68 0.24 1.75 0.45 7.78 

PPUU 14.77 24 76 0 -2.86 0.69 1.76 -0.39 1.29 0.17 3.24 0.52 27.49 

NNMP

C 
13.20 86 14 0 -0.74 0.54 1.34 -0.78 1.09 1.80 18.29 3.46 76.47 

MEDIR

L 
25.63 88 10 2 -0.51 0.59 1.72 -0.61 0.69 1.52 16.9 2.89 43.02 

Note: Comparative Analysis and Ablation Study (With N=50). 

First, the research claims that the BC models are able to finish the task with about 80% of 

success rates with a simple scenario (Pei and Xu, 2006). In which, AVs are controlled by BC 

model, while other vehicles run in a constant speed maintaining a large constant gap. In this 

challenging scenario, BC models are not able to finish the lane changing with more than 50% 

success. 

As PPUU is trained with the entire NGSIM dataset that mostly includes driving straight and 

because of the small clamping value for action (0.01 rd for steering angle), it mostly drives 

straight until it crashes to the front vehicle. This result shows how fragile the RL-trained 

policies are when being tested at a new environment. 

The next baseline, NNMPC, is able to achieve 86% successes. Compared to the other 

baseline models, NNMPC does not only rely on the learned or trained models, and it finds a 

rule-based optimal solution online on top of the NN-predicted behaviors. Although the 

NNMPC has strict safety constraints in its optimization, it is believed that the prediction 

model of other vehicles might fail sometimes when other vehicles’ velocity changes 

frequently. 

Next, some MEDIRL related trials has been tested. The Model Predictive Path Integral 

(MPPI) with the non-temporal Costmap is used to learn with the original MEDIRL algorithm 

for comparison. Since it cannot extract correct waypoints from non-temporal Costmap, this 

research did not test the MPC with the non-temporal Costmap. As the non-temporal Costmap 

does not include any notion of optimal velocity, unlike our spatiotemporal Costmap, the 

MPPI starting with zero initial velocity does not find an optimal solution to perform a lane 

change with the non-temporal Costmap. However, once it explores the wrong/opposite 

direction to the goal lane, the Costmap predicted at a new state (edge-case) is not correct, as 

the input data it takes has a very different distribution compared to the input in the training 

data. It should be emphasized that this compounding error problem still exists in Deep IRL 

and is one of the limitations of the reward function (cost function in MPC) learning methods 
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that only learn from successful cases.This research also tested MPPI with some initial 

velocity and the MEDIRL-learned non-temporal Costmap with an extra velocity cost to 

maintain a target velocity at 10 m/s with the Mean Squared Error (MSE) cost between the 

target and current velocities. Although it showed a higher success rate compared to only 

using the original MEDIRL Costmap, it still reports a lot of failures. Finding an optimal cost 

function that weighs between the two costs, position, and velocity, is not an easy task, and 

even finding a good target velocity for accomplishing autonomous driving tasks is difficult. 

This reminds one of the main motivations of our spatiotemporal Costmap learning. 

As expected, adding an extra safety check layer improved the success rates (88%) in all the 

models. However, failures happen even with the safety check layer when the collision 

checker does not determine that the collision would happen based on the other vehicle’s 

velocity. Our future research will focus on improving the model to explicitly remove any 

potential collision-causing Costmap by itself, through a specific training procedure, so that it 

can achieve 100% success rate without any extra safety-checker. 

7.4.2 Evaluation of Results 

The same experiments are also conducted with a more realistic scenario by removing one of 

assumptions of having a near-perfect state estimation. It injects an additive White Gaussian 

noise with different variance Σ𝑁 = [0.1,0.1,0.02,1.0,1.0] for different states [𝑥, 𝑦, 𝜓, 𝑣, 𝑎𝑐𝑐], 
where 𝑎𝑐𝑐 is the acceleration. The noise is added in the form of 𝑐𝑠 ∙ 𝜖, with noise scale 𝑐𝑠 and 

𝜖~𝒩（0, ∑ N）, to the estimated state of the other vehicles.  

As shown in Table 7-8, the performance degrades with bigger perception noise. From these 

experiments, it validates that there still exists a room for our method to improve, to make it 

more robust to real-world environments and to reduce the Sim2Real gap.  

 

Table 7-8 Sensitivity analysis of medirl with perception noise 

Noise scale  0.0 1.0 2.0 5.0 

Success rate (%) 82  80 74 68 

 

7.5 Summary 

This chapter describes the numerical results of the collision avoidance of LC’s decision-making 

and the success rate of LC’s dynamic trajectory planning. The experiment results showed that the 

proposed methods can generate a series of actions to minimize the driving risk and prevent the 

host vehicle from collisions in both the scenarios with crowded static obstacles and the scenarios 

with dynamically moving vehicles. The MEDIRL algorithm can be improved where our 

Costmap can be directly used by MPC to accomplish a task without any hand-designing or hand-

tuning of a cost function. And the proposed MEDIRL framework shows higher success rates in 

AVs’ LC in a challenging dense traffic highway scenario in the CARLA. 
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Chapter 8.  Summary and Conclusions 

8.1 Introduction 

This chapter will conclude the report with a summary of the simulation results. Direction for 

future work will also be provided. 

8.2 Summary and Conclusions 

8.2.1 Research of Decision Making based on RA-PRDQN 

In this project, DRL algorithms combined with risk assessment functions are innovatively 

proposed to find an optimal driving strategy with the minimum expected risk. The 

experiment results showed that most of the proposed methods can generate a series of actions 

to minimize the driving risk and prevent the host vehicle from collisions in both the scenarios 

with crowded static obstacles and the scenarios with dynamically moving vehicles.  

The most superior method among the examined ones is the RA prioritized replay DQN (RA-

PRDQN) with the following features: 1) when the HV tends to drive out of the road 

boundary, the policy will correct the HV to return to the drive lane; 2) the agent will 

encourage the HV to drive at the center of the lane; 3) when the potential risk level is high, 

the strategy will generate a series of actions to reduce the risk level for potential near 

collision avoidance; 4) the agent can generate correct steering decisions for lane changing 

when a potential collision obstacle exists. Our proposed methods in this project could be 

further improved by mending the sampling probability function for vehicle position 

initialization, supplementing braking behavior for speed control, considering the influence of 

driving style, deploying continuous action space-based DRL algorithms, and optimizing the 

hyper-parameters in our proposed methods. 

8.2.2 Research of Trajectory Planning based on MEDIRL 

In this work, we showed a new cost function learning algorithm that improves the original 

MEDIRL algorithm where our Costmap could be directly used by MPC to accomplish a task 

without any hand-designing or hand-tuning of a cost function. Compared to the baseline 

methods, the proposed MEDIRL framework showed higher success rates in autonomous 

driving, lane keeping, and LC in a challenging dense traffic highway scenario in the CARLA 

simulator. We believe this work will serve as a steppingstone toward connecting IRL and 

MPC. 

8.3 Directions for Future Research 

8.3.1 Research of Decision Making based on PRDQN 

As mentioned in Chapter 5, the mechanism of RA-PRDQN is a learning-free model which is 

dependent on the ground truth data. The most significant constraint of this is that the learning 

result could not transmit to any robust driving scenarios in the real world. The imitation 

learning-based model has been proposed to solve this problem, which could be applied to our 

research in the future. 

The second problem is that the reward function estimated the risk level in this research 

focuses on safety control but not comfortability control. It is so significant to make sure a 



88 

 

comfortable driving environment for LC maneuver. So, our future research is to explore a 

reasonable reward function for PRDQN learning.  

8.3.2 Research of Trajectory Planning based on MEDIRL 

From the results and discussion mentioned in the last chapter, some failures happened even 

when the collision checker did not determine that the collision would happen based on the 

other vehicle’s velocity. So, our future research will focus on improving our model to 

explicitly remove any potential collision-causing Costmap by itself, through a specific 

training procedure, so that it can achieve a 100% success rate without any extra safety-

checker. 
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